• Title/Summary/Keyword: Large-Scale Computations

Search Result 42, Processing Time 0.027 seconds

LARGE EDDY SIMULATION OF TURBULENT FLOWS AND DIRECT/DECOUPLED SIMULATIONS OF AEROACOUSTICS - PRESENT STATUS AND FUTURE PROSPECT -

  • Kato, Chisachi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.2-4
    • /
    • 2010
  • Due to rapid progress in the performance of high-end computers, numerical prediction of fluid flow and flow-induced sound is expected to become a vital tool for aero- and hydro- dynamic design of various flow-related products. This presentation focuses on the applications of large-scale numerical simulations to complex engineering problems with a particular emphasis placed on the low-speed flows. Flow field computations are based on a large eddy simulation that directly computes all active eddies in the flow and models only those eddies responsible for energy dissipations. The sound generated from low-speed turbulent flows are computed either by direct numerical simulation or by decoupled methods, according to whether or not the feedback effects of the generated sound onto the source flow field can be neglected. Several numerical examples are presented in order to elucidate the present status of such computational methods and discussion on the future prospects will also be given.

  • PDF

A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings

  • Thiis, Thomas K.
    • Wind and Structures
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 2000
  • Snowdrifts around buildings can cause serious problems when formed on undesirable places. The formation of snowdrifts is highly connected to the wind pattern around the building, and the wind pattern is again dependent on the building design. The shear stress on the surface and snowdrifting around different buildings are investigated through CFD analysis and compared to measurements. The computations of shear stress shows local minima in the same areas as snowdrifts are formed. The snowdrifting computations utilises a drift-flux model where a fluid with snow properties is allowed to drift through a fluid with air properties. An apparent dynamic viscosity of the snow/air mixture is defined and used as a threshold criterion for snowdrifting. The results from the snowdrifting computations show increased snow density where snowdrifts are expected, and are in agreement with previous large-scale snowdrift measurements. The results show that computational fluid dynamics can be a tool for planning building design in snowdrifting areas.

Development of Parallel Algorithm for Dynamic Analysis of Three-Dimensional Large-Scale Structures (3차원 대형구조물의 동적해석을 위한 병렬 알고리즘 개발)

  • 김국규;성창원;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.307-314
    • /
    • 2000
  • A parallel condensation algorithm for efficient dynamic analysis of three-dimensional large-scale structures is presented. The algorithm is developed for a user-friendly and cost effective high-performance computing system on a collection of Pentium processors connected via a 100 Mb/s Ethernet LAN. To harness the parallelism in the computing system effectively, a large-scale structure is partitioned into a number of substructures equal to the number of computers in the computing system Then, for reduction in the size of an eigenvalue problem the computations required for static condensation of each substructure is processed concurrently on each slave computer. The performance of th proposed parallel algorithm is demonstrated by applying to dynamic analysis of a three dimensional structure. The results show that how the parallel algorithm facilitates the efficient use of a small number of low-cost personal computers for dynamic analysis of large-scale structures.

  • PDF

Application of Genetic Algorithm for Large-Scale Multiuser MIMO Detection with Non-Gaussian Noise

  • Ran, Rong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 2022
  • Based on experimental measurements conducted on many different practical wireless communication systems, ambient noise has been shown to be decidedly non-Gaussian owing to impulsive phenomena. However, most multiuser detection techniques proposed thus far have considered Gaussian noise only. They may therefore suffer from a considerable performance loss in the presence of impulsive ambient noise. In this paper, we consider a large-scale multiuser multiple-input multiple-output system in the presence of non-Gaussian noise and propose a genetic algorithm (GA) based detector for large-dimensional multiuser signal detection. The proposed algorithm is more robust than linear multi-user detectors for non-Gaussian noise because it uses a multi-directional search to manipulate and maintain a population of potential solutions. Meanwhile, the proposed GA-based algorithm has a comparable complexity because it does not require any complicated computations (e.g., a matrix inverse or derivation). The simulation results show that the GA offers a performance gain over the linear minimum mean square error algorithm for both non-Gaussian and Gaussian noise.

GCaaS: A Light-weight Grid Computing Web Application

  • Liu, Xiao;Woo, Gyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.121-124
    • /
    • 2015
  • Recent global and cloud computing render the Internet and Web application to be a paramount field since it is uncomplicated to access and less time and space limitation. On the other hand, a growing number of computations using grid computing techniques indicates the requirements and quantities of large-scale computations are becoming foremost progressively. Therefore, that will be much practicable if there is a Web-based service that could provide Grid computing functions. In this paper, Several similar Web-based cloud and parallel computing systems will be discussed and a model of Web application termed GCaaS which supports grid computing services will be introduced.

Simultaneous analysis of concentration and flow fields in a stirred tank using large eddy simulation (대형 와 모사를 사용한 혼합 탱크 내의 농도장과 유동장의 동시 해석)

  • Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1972-1979
    • /
    • 2003
  • Transport of a scalar quantity, such as chemical concentration or temperature, is important in many engineering applications and environmental flows. Here we report on results obtained from the large eddy simulations of flow and concentration fields inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius (Yoon et al. $^{(1)}$). This study focused on the concentration development at different molecular diffusivities in a stirred tank operated under turbulent conditions. The main objective of the work presented here is to study the large-scale mixing structure at different molecular diffusivities in a stirred tank by using the large eddy simulation. The time sequence of concentration and flow fields shows the flow dependency of the concentration development. The presence of spatial inhomogenieties is detailed by observing the time variation of local concentration at different positions.

  • PDF

Shortest paths calculation by optimal decomposition (최적분해법에 의한 최단경로계산)

  • 이장규
    • 전기의세계
    • /
    • v.30 no.5
    • /
    • pp.297-305
    • /
    • 1981
  • The problem of finding shortest paths between every pair of points in a network is solved employing and optimal network decomposition in which the network is decomposed into a number of subnetworks minimizing the number of cut-set between them while each subnetwork is constrained by a size limit. Shortest path computations are performed on individual subnetworks, and the solutions are recomposed to obtain the solution of the original network. The method when applied to large scale networks significantly reduces core requirement and computation time. This is demonstrated by developing a computer program based on the method and applying it to 30-vertex, 160-vertex, and 273-vertex networks.

  • PDF

Eigen-sensitivity Analysis of Augmented System State Matrix (전력계통의 확대상태행렬 고유치감도 해석)

  • Shim, Kwan-Shik;Nam, Hae-Kon;Kim, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.749-753
    • /
    • 1996
  • This paper presents a new method for first and second order eigen-sensitivity analysis of system matrix in augmented form. Eigen-sensitivity analysis provides invaluable informations in power system planning and operation. However, conventional eigen-sensitivity analysis methods, which need all the eigenvalues and eigenvectors, can not be applicable to large scale power systems due to large computer memory and computing time required. In the proposed method, all sensitivity computations for a mode are carried out using the augmented system matrix and its own eigenvalue and right & left eigenvectors. In other words sensitivity analysis for a mode does not need informations on the other eigenvalues and eigenvectors and sparsity technique can be fully utilized. Thus compuations can be done very efficiently with moderate computer memory and computing time even for large power systems. The proposed algorithm is tested for one machine infinite bus system.

  • PDF

The study of flow structure in a mixing tank for different Reynolds numbers using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1806-1813
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PIV measurements (Hill et $al.^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et $al.^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the nondimeansional eddy viscosity, resolve scale and subgrid scale dissipations is clearly shown in this study.

  • PDF

The study of Flow Structure in a Mixing Tank for Different Reynolds Numbers Using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크 내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1290-1298
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PlY measurements (Hill et al. $^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et al. $^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the non-dimensional eddy viscosity, resolved scale and subgrid scale dissipations is clearly shown in this study.