• Title/Summary/Keyword: Large shear test

Search Result 482, Processing Time 0.043 seconds

Evaluation of Permanent Deformation Characteristics in Crushed Subbase Materials Using Shear Stress Ratio and Large Repeated Triaxial Compression Test (대형반복삼축시험과 전단응력비 개념을 이용한 쇄석 보조기층의 영구변형 특성평가)

  • Lim, Yu-Jin;Kim, In-Tae;Kwak, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.41-50
    • /
    • 2011
  • It is well-known that pavement is easily damaged by several factors including permanent deformation and fatigue crack, causing service life of the pavement to be shorter than expected. It is very important to predict amount of permanent deformation for designing pavement and developing design method of pavement. A new model of permanent deformation of pavement materials based on concept of shear stress ratio has been proposed because the lower pavement materials are highly affected by shear strength of the material. In this study a large repetitive triaxial load test has been adapted for performing test of permanent deformation of crushed subbase materials. The test procedure which includes concept of shear stress ratio has been newly developed. Several important model parameters can be obtained from the test that can be used for making correct permanent deformation model of the material.

Analysis on Shear characteristics of Rubble Stone Using Large-Scale Triaxial Test (대형삼축압축시험을 이용한 사석의 전단 특성 분석)

  • Jung, Chul-Min;Kim, Jong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.263-275
    • /
    • 2002
  • In general, the values of shear strength properties of rubble stones have been given quoting from Japanese empirical recommendation when breakwater and offshore structures of port and harbor facilities were designed in Korea. but by large-scale triaxial test(specimen diameter 30cm, specimen height 60cm) carried out in Korean Water Resources Corporation in 2001, for the first time in korea, shear strength properties of rubble stones are evaluated directly. These are compared with the Japanese empirical recommendation. Therefore, the value of shear strength properties of rubble stones have been usually given quoting from Japanese empirical recommendation without laboratory or in-situ tests, but the results of this study state that shear strength properties of rubble stone can be rationally determined and shear behavior characteristics of rubble stone can be invesgated by large-scale triaxial test

Comparisons on the Interface Shear Strength of Geosynthetics Evaluated by Using Various Kinds of Testing Methods (다양한 시험법에 의해 산정된 토목섬유 사이의 접촉면 전단강도 비교)

  • Seo, Min-Woo;Oh, Myoung-Hak;Yoon, Hyun-Suk;Park, Jun-Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.73-80
    • /
    • 2006
  • The shear behavior of four different interfaces consisting of four types of geosynthetics was investigated, and both static and dynamic test for the geosynthetic interfaces were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board test was compared with calculated values from large direct shear tests. The comparison results indicated that direct shear tests show high possibility to over-predict the shear strength in the low normal stress range where direct shear tests are not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table test, it was found that the friction angle might be different depending on the test method and normal stresses applied in the research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field with using the geosynthetic materials installed in the site.

Characteristics of Shear Behavior for Coarse Grained Materials Based on Large Scale Direct Shear Test (III) - Final Comprehensive Analysis - (대형직접전단시험을 이용한 조립재료의 전단거동 특성 (III) - 최종 종합 분석 -)

  • Lee, Dae-Soo;Kim, Kyoung-Yul;Hong, Sung-Yun;Oh, Gi-Dae;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.39-54
    • /
    • 2009
  • Large scale direct shear tests were carried out to analyze the shear behavior of crushed rocks at local representative quarries. Shear strength for each specimen was derived and the effects on shear behavior induced by the variation of factors such as particle size, water immersion, density, uniformity coefficient, and particle breakage were evaluated and quantitatively compared with previous studies. The opportunity was also taken to identify stress-dilatancy relation of crushed rocks following the energy-based theory and friction coefficients at critical state as well as peak friction angles and dilation angles were estimated. As a result of tests it was found that uniaxial compressive strength and particle breakage of the parent rocks have crucial effect on internal friction angles; in addition, dilatancy at the failure showed strong relationship as well.

Evaluation of Structural Behavior of Large Studs Using Partial Composite Beams (부분합성보를 이용한 대직경 스터드의 구조거동 평가)

  • Shim, Chang Su;Lee, Pil Goo;Ha, Tae Yul
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.425-432
    • /
    • 2004
  • Large studs were suggested not only for the design of steel-concrete composite bridges with simplified sections but also for the shear connection in precast decks requiring uniform distribution of shear pockets. Based on the push-out test results on studs with diameters of more than 25 mm, partial composite beams with 40%-degree shear connection were fabricated, and static tests were performed. The ultimate strength and horizontal shear load redistribution of partial composite beams, which have parameters of stud shank diameters and distribution, were evaluated, and group failure in the shear span was observed. Since the flexural strength of composite beams are dependent on the strength of their shear connection, the strength of the stud connection was estimated and it showed considerably higher shear strength. From the load-slip curves, the sufficient ductility and load redistribution of large studs were confirmed. Uniformly distributed large studs can provide proper ultimate behavior of composite beams.

1g shaking table tests on residual soils in Malaysia through different model setups

  • Lim, Jun X.;Lee, Min L.;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.547-558
    • /
    • 2018
  • Studies of soil dynamic properties in Malaysia are still very limited. This study aims to investigate the dynamic properties of two selected tropical residual soils (i.e., Sandy Clay and Sandy Silt) and a sand mining trail (Silty Sand) in Peninsular Malaysia using 1g shaking table test. The use of 1g shaking table test for soil dynamic testing is often constrained to large strain level and small confining pressure only. Three new experimental setups, namely large laminar shear box test (LLSBT), small chamber test with positive air pressure (SCT), and small sample test with suction (SSTS) are attempted with the aims of these experimental setups are capable of evaluating the dynamic properties of soils covering a wider range of shear strain and confining pressure. The details of each experimental setup are described explicitly in this paper. Experimental results show that the combined use of the LLSBT and SCT is capable of rendering soil dynamic properties covering a strain range of 0.017%-1.48% under confining pressures of 5-100 kPa. The studied tropical residual soils in Malaysia behaved neither as pure sand nor clay, but show a relatively good agreement with the dynamic properties of residual soils in Singapore. Effects of confining pressure and plasticity index on the studied tropical residual soils are found to be insignificant in this particular study.

A Study on the Shear Strength Characteristics of Composited Ground applying RAP Method by Large Direct Shear Test (대형직접전단시험에 의한 RAP 복합지반의 전단강도 특성 연구)

  • Chun, Byung-Sik;Seo, Deok-Dong;Kim, Jong-San
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.82-89
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the shear strength characteristics according to the area replacement ratio of RAP and the relative density of in-situ ground was studied through soil laboratory tests and large direct shear tests in a model ground. As a result, the internal friction angle tends to increase in proportion to in-situ relative density(Very Loose, Loose, Medium) in composite ground formed by the same area replacement ratio of RAP and also increase in proportion to increasing the area replacement ratio(30, 40, 50%) of RAP in the same ground condition. Furthermore, the comparative analysis between the experimental value and theoretical value of the shear strength is carried out.

  • PDF

An Experimental Study on the Shear Characteristics of Rock Joint by Tilting Test (Tilting Test에 의한 암반절리면의 전단특성에 관한 실험적 연구)

  • 신방웅;신진환;이봉직
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.103-111
    • /
    • 1994
  • Recently, rock slope in large scale is often accompanied with the construction of mountain roads and power plants. Rock in nature has a number of discontinuities such as bedding plane, joints, fracture zones and others. In order to improve rock slope stability, it is necessary to research shear properties of rock joint. In this paper shear properties of rock joint were studied by tilting test. Relations between properties of roughness and shear behavior of rock joint are investigated experimentally. The roughness are examined by compared with shear strength. Consequently, it becomes clear that the engineering properties and failure state modes of slope is different by JRC, and the peak friction angle is different by percent of filling.

  • PDF

Evaluation of Interface Shear Properties Through Static Friction Tests (정적마찰 시험을 통한 접촉전단 특성평가)

  • Chang, Yong-Chai;Lee, Seung-Eun;Seo, Ji-Woong;Bowders, John J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.813-818
    • /
    • 2009
  • Shear properties of plastic bottle film/plastic bottle film and plastic bottle film/granitic soil which were evaluated from static friction tests. The monotonic shear experiments were performed by using an tilt table apparatus and large direct shear device. The test results showed that the friction angle of each interface and the interface depended on the amount of normal stress, the type of the interface used. Therefore, the testing method should be determined carefully by considering the type of loads and normal stress expected in the field with using the materials installed in the site.

  • PDF

Characteristics of shear strength of coarse-grained materials using large triaxial test equipment (대형삼축시험 장비를 이용한 조립재료의 전단강도 특성)

  • Jin, Guang-Ri;Snin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1017-1024
    • /
    • 2009
  • In the past few decades, the rockfill embankment dam, which has superior workability and economy, has become a major trend. In Korea, most of the embankment dams are rockfill dams, but recently, in response to the demand for sustainable development and environmentally-friendly water resource development, the sand and gravel in streams has become a major construction material for dams, rather than the non-economic rockfill, and its application examples have also increased. In this study, a large triaxial test was performed, with construction samples of different maximum sizes, in parallel with the grading method at the 'B Dam' construction site in Korea, and the effects of the different maximum sizes on the strain of the dam construction material and on the shear strength characteristics were analyzed to provide the basic data for determining the strength characteristics of the coarse-grained materials by the maximum size.

  • PDF