• Title/Summary/Keyword: Large forging

Search Result 150, Processing Time 0.025 seconds

The manufacturing process analysis and design of the forged turbine rotor by using the numerical analysis technique (수치해석 기법을 이용한 발전용 단조 로타의 제조 공정 분석 및 공정 설계)

  • 조종래;김동권;이정호;이부윤;이명렬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.25-34
    • /
    • 1995
  • Large-scale low-alloy steel shafts, used in the manufacture of steam turbine, are produced by ingot making, forging and heat treatemtn processes. The numerical analysis techniques are introduced to analyze and design the working conditions in each process. The solidification of a steel ingot is studied through the finite element method. The open die press forging and quenching process are simulated by viscoplastic and elastic-plastic finite element method, respectively. Thus numerical analysis techniques are very useful tools to study favorable working conditions for better and more desirable product quality.

Consideration on Friction Laws and their Effect on Finite Element Solutions in Buk Metal Forming (체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰)

  • 전만수;문호근;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.233-237
    • /
    • 1995
  • Effects of frictional laws on finite element solutions in bulk metal forming were investigated in this paper. The Coulomb friction and the constant shear friction law were compared through finite element anlayses of compression of ring and cylinders with different aspect rations, ring-gear forging and hot strip rollin under the isothermal condition. It has been shown that two laws may yield quite different results inthe case that the aspect ration of a process is large, for example , strip rolling and ring -gear forging and that the difference depends mainly on the aspect ratio and the friction.

  • PDF

Characteristics of Extruded Mg alloy(AZ31) for various annealing temperatures (정수압 압출 소재의 열처리 조건에 따른 마그네슘합금(AZ31)의 특성 변화)

  • Seo Y. W.;Choi H. J.;Yoon D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.463-466
    • /
    • 2005
  • Restoring ductility or removing residual stresses is a necessary operation when a large amount of cold working is to be performed, such as in a cold-forging or warm forging process. The advantage of annealing temperatures was investigated. After Hydrostatic Extrusion process, extruded materials were annealed at $200^{\circ}C,\;350^{\circ}C,\;450^{\circ}C$ for 1 hour. Microstructure of the annealed material was observed to make an understand about the difference in mechanical properties.

  • PDF

Forging Die Design for Vent Forming of Square Cup Battery Case (사각 컵 배터리 케이스 바닥 벤트 성형을 위한 단조 금형 설계)

  • Lee, Sang-Hoon;Kwon, Soon-Ho;Chung, Hoon;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.330-335
    • /
    • 2017
  • The demand for electric motor fuel cells has surged in the automotive industry, leading to a recent increase in the demand for square aluminum cans used as fuel cell battery casings. The air vent located on the bottom of the rectangular battery casing prevents large explosions by intermittent pressure release prior to the accumulation of abnormally high pressures. Conventionally, the square cup battery casing is produced via six-step deep drawing, with the outer shape of the vent being manufactured by welding to the square battery casing. On the other hand, this study directly incorporated the air vent outlet into the bottom surface of the rectangular casing. The product of a coupled finite element analysis technique applying the thickness and contour generated from the square cup multi-step deep drawing formation analysis was used as the forging input shape. The results yielded increased prediction accuracy and the advanced prediction of defects, such as swelling and fracture. Based on the results of the initial analyses, two of the generated forging shapes were determined to be suitable, with the optimal forging shape being determined by molding analysis. The results presented here were validated by mold fabrication and a subsequent comparison of the actual and analytical results.

Impact Behavior of Large SF590A Forged Product (SF 590A 대형 단조품의 충격특성에 관한 연구)

  • Jin, Sang-Uk;Kim, Sang-Shik;Lee, Young-Seon;Lee, Seung-Uk;Kim, Nam-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.61-66
    • /
    • 2008
  • Impact behavior of large SF590A (Fe-0.65C-1.5Mn-0.035P-0.035S-0.3Cr-0.15Mo-0.4Ni-0.3Cu) forged propeller shaft was studied in this study. Charpy impact specimens were prepared from the forged product with different heat number. The impact value of each specimen with different heat number tends to vary greatly depending on the prior austenite grain size and, less significantly, on the amount of sulfur. The dominant metallurgical factors affecting impact behavior of SF590A forged product are discussed based on fractographic and metallographic observations.

  • PDF

Microstructural Changes and Mechanical Properties of 7175 Aluminum Alloy Die Forgings (7175 알루미늄합금 형단조재의 미세조직 변화와 기계적 성질)

  • Lee I. G;You J. S;Kang S. S;Lee O. Y
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.168-174
    • /
    • 2004
  • The aim of this study is to investigate the effect of process conditions on the microstructual changes and mechanical properties of large 7175 aluminum die forgings. The cast billets of 370 and 720 mm in diameter were homogenized and die forged after direct chill casting. The size and volume fraction of second phase particles in 720 mm billet were larger than those of 370 mm billet. The interdendritic sites containing the second phase particles was considered to be a crack initiation region in the process of cold upsetting. The tensile and yield strength of die forged specimens of 720 mm billet in the direction of Land L T were higher than those of 370 mm billet. However, the tensile strength of these specimens were 5 to 10% lower than that of American military specification. The plane strain fracture toughness of die forged specimens of 370 mm cast billet showed almost the same level of 720 mm billet, which was die forged after free forging.

Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718 (초내열 합금 Inconel 718 열간 헤딩 공정에서의 조직 및 기계적 특성 변화)

  • Choi, Hong-Seok;Ko, Dae-Chul;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1373-1378
    • /
    • 2007
  • Metal forming ins the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading precess of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked produce. Die material is SKD61 and initial temperature is $300^{\circ}C$. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out suing DEFORM software before making the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is known that forming load was decreased according to decreasing punch velocity.

  • PDF

The Influence of Compression Holding Step on Mechanical Properties of Products in Closed-Die Compression Process for Semi-Solid Material (반융용 재료의 밀폐 압축 공정에서 가압유지 단계가 제품의 기계적 성질에 미치는 영향)

  • 최재찬;박형진;이병목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.199-203
    • /
    • 1995
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect mechanical properties and shape of products is important to make decision, where it is necessary to find overall hert transfer coefficeient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of octaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression hoiding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression hoiding time on mechanical properties of products is finally investigated by experiment.

  • PDF

A Study on Pressure Surge Accompanied by Repeated Valve Operation in Oil Hydraulic Pipeline (유압관로에서 절환밸브 반복조작에 따른 충격압력 발생 현상에 관한 연구)

  • Jung, Yong-Gil;Yum, Man-U;Lee, Jin-Geol;Lee, Il-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.2
    • /
    • pp.33-42
    • /
    • 1988
  • In a large scale oil hydraulic system having repeatedly operated actuator, such as a large scale forging press, pressure surges often due to the recombination of oil column in a return line attached to the downstream side of a directional control valve. Expecially, the pressure surges appear very severe ones at a certain valve operating frequency. These pressure surges restrict the operating frequency of the hydraulic system. But related reports on the above mentioned phenomenon are rarely to be found. In this study, therefore, the authors investigate the exact reason why such severe pressure surges occur at a certain range of valve operating frequency. The study is performed by experiment and numerical computation on the relationship between pressure surges and valve operating frequency.

  • PDF

Two-Dimensional Thermo-Viscopiastic Finite Element Analysis of Free Forginf for Large Ingot Considerinf Internal Contact Treament on One Deforming Body (변형하는 동일물체간의 접촉처리를 고려한 대형강괴 자유단조의 2차원 열점소성 유한요소해석)

  • 박치용;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.102-108
    • /
    • 1995
  • Internal contact scheme between two free surfaces on one deforming body has been proposed by using the penalty method. It has been imposed to be internal boundary condition on two-dimensional thermo-viscoplastic finite element method so as to analyze one deforming body, which has two free surfaces penetrating each others. Analysis of side pressing with a circular void and a inclined elliptic hole have been carried out in order to verity the proposed contact scheme. A finite element code imposed internal boundary condition has been applied to two-dimensional analysis of free forging of large ingot with a void. Through the analysis, effects of working parameters in order to consolidate voids have been investigated.

  • PDF