• Title/Summary/Keyword: Large fault

Search Result 675, Processing Time 0.022 seconds

A Study on Fire Investigation Technique For Single Line to Ground Faults in Distribution Line Using EMTP Simulation (EMTP 시뮬레이션을 통한 배전선로의 1선 지락 사고시 화재 조사 기법에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hie Sik;Lee, Hoon Gi;Cho, Yong Sun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • Approximately 20% of the total fire is electrical fire, and electrical energy is a potential source of heat. Large-scale fault currents that occur during a line ground fault flow into electric utility poles, electric power equipment, or electric appliances of the customer, and cause simultaneous electrical fire. In this paper, we investigated the possibility of fire through the change of fault current flowing in faulty and sound feeder in case of 1 line ground fault in 22.9 kV distribution line. We propose a fire investigation analysis method for simultaneous multiple electrical fire such as evidence analysis method, and fault current occurrence confirmation method in case of fire accident by analyzing the fault current occurring in the ground fault in the distribution line using EMTP, electric power system analysis program.

A Study on Characteristics and Dynamic Response Spectrum of Near Fault Ground Motions (근거리지진의 특성과 동적응답스펙트럼에 관한 연구)

  • Bang, Myung-Seok;Han, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.143-151
    • /
    • 2005
  • In this study, it is demonstrated that how the effect of the Near Fault Ground Motion affects the response of the structure. Considering the general characteristic of Near Fault Ground Motion the characteristics of Near Fault Ground Motions is analysed by elastic response spectrums, and the inelastic response spectrum is evaluated with the ductility and the yield strength to consider the inelastic behavior which couldn't be simulated through the elastic response spectrum. The result of this study shows that the effect of Near Fault Ground Motion should be considered in the long period range of long span structures but the domestic seismic design code was developed based on Far Fault Ground Motions, so the effects of Near Fault Ground Motions, which is very serious especially in large structures with a long period, are not considered. Therefore, the effect of the Near Fault Ground Motion has to be examined especially in the seismic performance evaluation of long period structure.

Analysis on Voltage Sag in Power Distribution System according to SFCL's Impedance for Protective Coordination with Large Transformer (배전계통에 대용량변압기 교체 적용시 초전도 한류기의 임피던스에 따른 순간전압 분석)

  • Kim, Jin-Seok;Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.312-316
    • /
    • 2014
  • In this paper, a voltage sag is analyzed in case of superconducting fault current limiter (SFCL) installed in power distribution system where replaces the main power transformer to large one to meet the power demand. First, the power system is configurated to analyze the operation characteristics of the protective relay with replacement of the main transformer and application of the SFCL. Next, the method to meet the protection coordination is analyzed with large transformer using PSCAD/EMTDC. Finally, the bus voltage is investigated according to the impedance of both main transformer and SFCL in case that the SFCL is applied into feeder.

No-Holding Partial Scan Test Mmethod for Large VLSI Designs (대규모 집적회로 설계를 위한 무고정 부분 스캔 테스트 방법)

  • 노현철;이동호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, we propose a partial scan test method which can be applied to large VLSI designs. In this method, it is not necessary to hold neither scanned nor unscanned flip-flops during scan in, test application,or scan out. This test method requires almost identical design for testability modification and test wave form when compared to the full scan test method, and the method is applicable to large VLSI chips. The well known FAN algorithm has been modified to devise to sequential ATPG algorithm which is effective for the proposed test method. In addition, a partial scan algorithm which is effective for the proposed test method. In addition, a partial algorithm determined a maximal set of flip-flops which gives high fault coverage when they are unselected. The experimental resutls show that the proposed method allow as large as 20% flip-flops to remain unscanned without much decrease in the full scan fault coverage.

  • PDF

Real-time Fault Detection in Semiconductor Manufacturing Process : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.20-26
    • /
    • 2017
  • Process control is crucial in many industries, especially in semiconductor manufacturing. In such large-volume multistage manufacturing systems, a product has to go through a very large number of processing steps with reentrant) before being completed. This manufacturing system has many machines of different types for processing a high mix of products. Each process step has specific quality standards and most of them have nonlinear dynamics due to physical and/or chemical reactions. Moreover, many of the processing steps suffer from drift or disturbance. To assure high stability and yield, on-line quality monitoring of the wafers is required. In this paper we develop a real-time fault detection system on semiconductor manufacturing process. Proposed system is superior to other incremental fault detection system and shows similar performance compared to batch way.

Influence of the Large Scaled Wind Farm Interconnected with 154 kV Power Networks on the Distance Relay (154 kV 계통 연계 대규모 풍력단지가 송전선 거리계전기에 미치는 영향)

  • Jang, Sung-Il;Kim, Kwang-Ho;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.334-336
    • /
    • 2003
  • This paper describes the influences of the large scaled wind farm interconnected with 154 kV power networks on the operational characteristics of distance relay applied in the transmission line. The wind farm composed of wind turbine generators are one of the great energy sources: they can supply the power into an interconnected network not only the normal conditions, but also the fault conditions of power network. Therefore, the distance relay applied in the transmission tine may mal-operate due to the contribution of wind farm. This paper presents the operational characteristics of distance relay for the fault occurred in the transmission line interconnected with wind farm. Simulation results show that it is difficult to recognize the fault location due to the power output of wind farm.

  • PDF

Analysis of Faults of Large Power System by Memory-Limited Computer (소형전자계산기에 의한 대전력계통의 고장해석)

  • Young Moon Park
    • 전기의세계
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 1972
  • This paper describes a new approach for minimizing working memory spaces without loosing too much amount of computing time in the analysis of power system faults. This approach requires the decomposition of alrge power system into several small groups of subsystems, forms individual bus impedance matrics, store them in the auxiliary memory, later assembles them to the original total system by algorithms. And also the approach uses techniques for diagonalizing primitive impedances and expanding the system bus impedance matrices by adding a fault bus. These scheme ensures a remarkable savings of working storage and continous computations of fault currents and voltages with the voried fault locations.

  • PDF

Study of Fault Detection Method for Two-Degree of Freedom Dynamically Tuned Gyros on Orthogonal Configuration (2 자유도 동조자이로 직교배치에 대한 고장검출기법 연구)

  • Kim, Jeong-Yong;Oh, Jun-Seok;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.150-156
    • /
    • 2007
  • In this paper, we focus on the fault detection and isolation(FDI) method for inertial navigation system with three two-degree of freedom dynamically tuned gyros(DTG) on orthogonal sensor configuration. we propose the FDI method which can detect the fault of each DTGs rather than the fault of each sensing axis. The proposed FDI method is separated into two FDI modules according to the fault magnitude in order to improve the reliability of fault detection information. For large fault detection, only instantaneous DTG measurement is used to detect a fault DTG within a short time. For small fault detection, the integrated value of DTG measurements are used to detect a fault DTG. It takes a more time to detect a fault but it serves more reliable fault detection information. Using the proposed FDI method with consideration of DTG fault characteristic, we could find out a fault DTG successfully.

  • PDF

Development of Parallel Arc Fault Detector Using Ripple Voltage (리플전압을 이용한 병렬아크 사고 감지기 개발)

  • Choi, Jung-Kyu;Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.453-456
    • /
    • 2016
  • The major causes of electrical fire in low-voltage distribution lines are classified into short-circuit fault, overload fault, electric leakage, and electric contact failure. The special principal factor of the fire is electric arc or spark accompanied with such electric faults. This paper studies the development of an electric fire prevention system with detection and alarm of that in case of parallel arc fault occurrence in low-voltage distribution lines. The proposed system is designed on algorithm sensing the instantaneous voltage drop of line voltage at arc fault occurrence. The proposed detector has characteristics of high-speed operation responsibility and superior system reliability from composition using a large number of semiconductor devices. A new sensing control method that shows the detection of parallel arc fault is sensed to ripple voltage drop through a diode bridge full-wave rectifier at electrical accident occurrence. Some experimental tests of the proposed system also confirm the practicality and validity of the analytical results.

Investigation of a Hybrid HVDC System with DC Fault Ride-Through and Commutation Failure Mitigation Capability

  • Guo, Chunyi;Zhao, Chengyong;Peng, Maolan;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1367-1379
    • /
    • 2015
  • A hybrid HVDC system that is composed of line commutated converter (LCC) at the rectifier side and voltage source converter (VSC) in series with LCC at the inverter side is studied in this paper. The start-up strategy, DC fault ride-through capability, and fault recovery strategy for the hybrid HVDC system are proposed. The steady state and dynamic performances under start-up, AC fault, and DC fault scenarios are analyzed based on a bipolar hybrid HVDC system. Furthermore, the immunity of the LCC inverter in hybrid HVDC to commutation failure is investigated. The simulation results in PSCAD/EMTDC show that the hybrid HVDC system exhibits favorable steady state and dynamic performances, in particular, low susceptibility to commutation failure, excellent DC fault ride-through, and fast fault recovery capability. Results also indicate that the hybrid HVDC system can be a good alternative for large-capacity power transmission over a long distance byoverhead line.