• Title/Summary/Keyword: Large delay

Search Result 914, Processing Time 0.029 seconds

Ayymptotic performance analysis and adaptive control of large scale limited service token-passing networks with priorities (우선순위 및 제한 서어비스를 갖는 대규모 토큰-패싱 네트워크의 점근적 성능해석 및 적응제어)

  • 심광현;임종태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1000-1005
    • /
    • 1993
  • In this paper asymptotic formulate for performance characteristics throughput, delay) of large scale token-passing networks with priorities and limited service are given. In particular, adaptive control procedures for obtaining optimal buffer capacity with respect to each priority and optimal limited service are shown. All results obtained are supported by simulations.

  • PDF

Asymptotic performance analysis and adaptive control of large-scale token-passing networks (대규모 토큰-패싱 네트웍의 점근적 성능분석 및 적응제어)

  • 심광현;임종태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.37-42
    • /
    • 1992
  • The main purpose of the paper is to derive asymptotic formulae for performance characteristics(throughput, delay) of large-scale token-passing network with buffered stations and to optimize the buffer capacity with respect to the probability of data generation. We consider two versions of token-passing network: uniform and nonuniform token-passing time interval. All results obtained are supported by simulations.

  • PDF

Decentralized Adaptive Control for Nonlinear Systems with Time-Delayed Interconnections: Intelligent Approach (시간 지연 상호 연계를 가진 비선형 시스템의 분산 적응 제어: 지능적인 접근법)

  • Yoo, Sung-Jin;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.413-419
    • /
    • 2009
  • A decentralized adaptive control method is proposed for large-scale systems with unknown time-delayed nonlinear interconnections unmatched in control inputs. It is assumed that the time-delayed interaction terms are bounded by unknown nonlinear bounding functions. The nonlinear bounding functions and uncertain nonlinear functions of large-scale systems are compensated by the function approximation technique using neural networks. The dynamic surface control method is extended to design the proposed memoryless local controller for each subsystem of uncertain nonlinear large-scale time delay systems. Therefore, although the interconnected systems consist of a large number of subsystems, the proposed controller can be designed simply. We prove that all the signals in the total closed-loop system are semiglobally uniformly bounded and the control errors converge to an adjustable neighborhood of the origin. Finally, an example is given to demonstrate the effectiveness and applicability of the proposed scheme.

A New Clock Routing Algorithm for High Performance ICs (고성능 집적회로 설계를 위한 새로운 클락 배선)

  • 유광기;정정화
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.64-74
    • /
    • 1999
  • A new clock skew optimization for clock routing using link-edge insertion is proposed in this paper. It satisfies the given skew bound and prevent the total wire length from increasing. As the clock skew is the major constraint for high speed synchronous ICs, it must be minimized in order to obtain high performance. But clock skew minimization can increase total wire length, therefore clock routing is performed within the given skew bound which can not induce the malfunction. Clock routing under the specified skew bound can decrease total wire length Not only total wire length and delay time minimization algorithm using merging point relocation method but also clock skew reduction algorithm using link-edge insertion technique between two nodes whose delay difference is large is proposed. The proposed algorithm construct a new clock routing topology which is generalized graph model while previous methods uses only tree-structured routing topology. A new cost function is designed in order to select two nodes which constitute link-edge. Using this cost function, delay difference or clock skew is reduced by connecting two nodes whose delay difference is large and distance difference is short. Furthermore, routing topology construction and wire sizing algorithm is developed to reduce clock delay. The proposed algorithm is implemented in C programming language. From the experimental results, we can get the delay reduction under the given skew bound.

  • PDF

A Digital Up-Down Conversion for Wibro Repeater using IIR Filters having Almost Linear Phase Response (유사 선형 위상 특성을 갖는 IIR 필터군을 이용한 Wibro용 디지털 상하향 변환 연구)

  • Chang, Hyung-Min;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.209-216
    • /
    • 2009
  • The repeater for wireless broadband internet (Wibro) system using OFDM demands the short processing delay to eliminate inter-symbol interference resulted from the time delay greater than the guard time. Towards this, the total system delay of repeater is expected to be minimized as possible as it can without distorting signal quality. In general, the FIR-type of filter is commonly deployed as a channelization filter, but due to its large amount of coefficients for producing prerequisite filter response the excessive large time delay occurs. To withstand this problem, the paper proposes the method for designing IIR filter whose response almost identical to that of the original filter. Moreover, in order to linearize the phase response of the designed IIR filter, this paper also introduce the way of designing the all-pass filter to be cascaded works for linearizing phase response of the channelization as well as the de-channelization filter. To achieve the further improvement in linearization of the phase response and reduction of the overall complexity, this paper tries to transform the integrated IIR filter group into the structure in polyphase style. The computer simulation verifies that the integrated IIR filter group designed in this paper reveals the relatively short processing delay without harming the acceptible signal quality.

Underwater acoustic communication performance in reverberant water tank (잔향음 우세 수조 환경에서의 수중음향 통신성능 분석)

  • Choi, Kang-Hoon;Hwang, In-Seong;Lee, Sangkug;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.184-191
    • /
    • 2022
  • Underwater acoustic wave in shallow water is propagated through multipath that has a large delay spread causing Inter-Symbol Interference (ISI) and these characteristics deteriorate the performance in the communication system. In order to analyze the communication performance and investigate the correlation with multipath delay spread in a reverberant environment, an underwater acoustic communication experiment using Binary Phase-Shift Keying (BPSK) signals with symbol rates from 100 sym/s to 8000 sym/s was conducted in a 5 × 5 × 5 m3 water tank. The acoustic channels in a well-controlled tank environment had the characteristics of dense multipath delay spread due to multiple reflections from the interfaces and walls within the tank and showed the maximum excess delay of 40 ms or less, and the Root Mean Squared (RMS) delay spread of 8 ms or less. In this paper, the performances of Bit Error Rate (BER) and output Signal-to-Noise Ratio (SNR) were analyzed using four types of communication demodulation techniques. And the parameter, Symbol interval to Delay spread Ratio in reverberant environment (SDRrev), which is the ratio of symbol interval to RMS delay spread in the reverberant environment is defined. Finally, the SDRrev was compared to the BER and the output SNR. The results present the reference symbol rate in which high communication performance can be guaranteed.

An Application Layer Multicast Performance Enhancement Scheme (응용 계층 멀티캐스트 성능 향상 기법)

  • Kim Sunghoon;Kang Kyungran;Lee Dongman;Mo Jeonghoon
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.6
    • /
    • pp.608-619
    • /
    • 2004
  • Application layer multicast(ALM) has been developed as an alternative to support the multi-receiver applications due to the slow deployment of IP multicast. Unlike routers in IP multicast, end systems participating in a ALM session are not optimized for relaying data and have various processing and network capacity. Therefore, with the increased role of end systems, the delay incurred at the end systems occupy large portion of the end-to-end delay. In this paper, we model the end system delay of ALM sessions and analyze its impact on the performance of the existing ALM schemes. Furthermore, we propose an enhanced scheme, based on the existing mesh-based scheme, which reflects the end system delay We also evaluate the performance of the proposed scheme by simulation and show that it reduces the end-to-end delay compared with the existing scheme.

Performance Analysis of a Dynamic Priority Control Scheme for Delay-Sensitive Traffic (음성 트래픽을 위한 동적우선권제어방식의 성능분석)

  • 김도규;김용규;조석팔
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.3-11
    • /
    • 2000
  • This paper considers the performance of a dynamic priority control function (DPCF) of a threshold-based Bernoulli priority jump (TBPJ) scheme. Loss-sensitive and delay-sensitive traffics are applied to a system with a TBPJ scheme that is a general state-dependent Bernoulli scheduling scheme. Loss-sensitive and delay-sensitive traffics represent sound and data, respectively. Under the TBPJ scheme, the first packet of the loss-sensitive traffic buffer goes into the delay-sensitive traffic buffer with Bernoulli probability p according to system states which represent the buffer thresholds and the number of packets waiting for scheduling. Performance analysis shows that TBPJ scheme obtains large performance build-up for the delay-sensitive traffic without performance degradation for the loss-sensitive traffic. TBPJ scheme shows also better performance than that of HOL scheme.

  • PDF

Performance Analysis of Type-I Hybrid ARQ System Considering Transmission Delay Time (전송 지연시간을 고려한 Type-I Hybrid ARQ 시스템의 성능 분석)

  • 조치원;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.879-888
    • /
    • 1999
  • A Study on the ARQ scheme of data error control is important for more reliable information transmission. Since performance difference is large by the long transmission delay time in satellite communication, the performances of SR ARQ and conventional type-I hybrid ARQ with fixed code rate are investigated by using the parameters of packet length, channel capacity, BER, and transmission delay time especially. BCH code is used in type-I hybrid ARQ for FEC method. This paper presents the throughput analyses according to such various parameters as BCH code rate, window size, data rate and round-trip delay time. Especially we derive a performance equation of type-I hybrid ARQ with the factor of the transmission delay time using the equation of SAW ARQ. Also, the performance of type-I hybrid ARQ specially considering transmission delay time is analyzed through numerical analysis and computer simulation so we can get a important characteristics variation.

  • PDF

An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on Mobile Edge Computing

  • He, Bo;Li, Tianzhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.489-504
    • /
    • 2021
  • By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.