• Title/Summary/Keyword: Large container vessel

Search Result 62, Processing Time 0.019 seconds

Axiomatic design study for automatic ship-to-ship mooring system for container operations in open sea

  • Kim, Yong Yook;Choi, Kook-Jin;Chung, Hyun;Lee, Phill-Seung
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • To provide more rational design solutions at conceptual design level, axiomatic design method has been applied to solve critical part of a new engineering problem called Mobile Harbor. In the implementation, the Mobile Harbor, a functional harbor system that consists of a vessel with container crane approaches to a container ship anchored in the open sea and establishes a secure mooring between the two vessels to carry out loading and unloading of containers. For this moving harbor system to be able to operate successfully, a reliable and safe strategy to moor and maintain constant distance between the two vessels in winds and waves is required. The design process of automatic ship-to-ship mooring system to satisfy the requirements of establishing and maintaining secure mooring has been managed using axiomatic design principles. Properly defining and disseminating Functional Requirements, clarifying interface requirements between its subsystems, and identifying potential conflict, i.e. functional coupling, at the earliest stage of design as much as possible are all part of what need to be managed in a system design project. In this paper, we discuss the automatic docking system design project under the umbrella of KAIST mobile harbor project to illustrate how the Axiomatic Design process can facilitate design projects for a large and complex engineering system. The solidified design is presented as a result.

Hydrodynamic Interaction Analysis of Floating Multi-body System

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook;Kim, Young-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • Recently, several problems have occurred in the space, infra-structure, and facility of the contiguity of existing harbors due to the trend of enlarged container vessels. In this regard, the Mobile Harbor has been proposed conceptually in this study as an effective solution for these problems. The concept is that of a transfer loader that transfers containers from a large container ship to the harbor on land, and is a catamaran type floating barge. The catamaran-type vessel is well known for its advantage in maneuverability, resistance, and effectiveness for working on board. For the safe and effective operation of the two floating bodies (a container ship and the mobile harbor in the near sea detached from the quay), robot arms, novel crane systems, and pneumatic fenders are specially devised with an additional mooring facility or DP (dynamic positioning) system. In this study, this concept is to be verified through comparison and simulation studies under various environmental conditions. It is shown that the proposed concept is in general feasible but there are several areas for further investigation and improvement.

A Study on the Safety Improvement of Vessel Traffic in the Busan New Port Entrance (부산신항 진출입 항로 내 선박 통항 안전성 향상에 관한 연구)

  • Choi, Bong-kwon;Park, Young-soo;Kim, Nieun;Kim, Sora;Park, Hyungoo;Shin, Dongsu
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.321-330
    • /
    • 2022
  • Busan New Port manages the largest volume of traffic among Korean ports, and accounts for 68.5% of the total volume of the Busan port. Due to this increase in volume, ultra large container ships call at Busan New Port. When the additional south container terminal as well as ongoing construction project of the west container terminal are completed, various encounters may occur at the Busan New Port entrance, which may cause collision risk.s Thus, the purpose of this study was to provide a plan to improve the safety of vessel traffic, in the in/out bound fairway of Busan New Port. For this purpose, the status of arrivals and departures of vessels in Busan New Port, was examined through maritime traffic flow analysis. Additionally, risk factors and safety measures were identified, by AHP analysis with ship operators of the study area. Also, based on the derived safety measures, scenarios were set using the Environmental Stress model (ES model), and the traffic risk level of each safety measure was identified through simulation. As a result, it is expected that setting the no entry area for one-way traffic would have a significant effect on mitigating risks at the Busan New Port entrance. This study can serve as a basis for preparing safety measures, to improve the navigation of vessels using Busan New Port. If safety measures are prepared in the future, it is necessary to verify the safety by using the traffic volume and flow changes according to the newly-opened berths.

A Study on the Quantitative Risk Analysis Using CFD for the Fuel Gas Supply System of Gas Fueled Ship (가스추진선박의 가스연료공급시스템에 대한 CFD를 이용한 정량적 위험도 해석에 관한 연구)

  • Kim, Kipyoung;Kim, Daeheon;Lee, Youngho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • LNG has significant advantages in regard to environmental aspects comparing with conventional fuel oil. In fact, it is estimated that NOx and SOx emission can be reduced by about 90% and 100%, respectively in case of using LNG as a fuel. LNG-fuelled ship has been considered to be the best option both from an environmental and an economic point of view. Along with these trends, some major shipyards and Classification Societies have started to carry out the risk-based system design for LNG-fuelled ship such as passenger ship, platform supply vessel and large container vessel etc. However, new conceptual gas fuelled ship has high risk level compared with vessel using traditional crude oil especially in view of gas explosion accident. Therefore safety area where installed fuel gas supply system is required risk based system design with special considerations. On this paper, the entire process necessary for the quantitative risk analysis was explained to meet the satisfactory safety level of gas fuelled ship.

A study on development strategy of Automated Container Terminal (자동화 컨테이너터미널 개발 전략에 관한 연구)

  • 최형림;박남규;박병주;유동호;권해경
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.479-485
    • /
    • 2004
  • The interest of ACT (Automated Container Terminal) is increasing because of expansion of container's transportation quantity, appearance of large-sized and. high-speed vessel, high labor cost of container terminal and the change of technical level. Therefore, the ACT had been developed in several ports in the world, such as ECT (Europe Combined Terminals) and CTA (Container Terminal Altenwerder). They have studied detailed technique for the operation of ACT. In Korea, it also has increased not only expansion and improvement of container terminal, but also necessity of ACT. Now, many projects related to the development of ACT are working in Korea. And the technical improvement of operating system, automated equipments and information system has accomplished by the projects. The ACT consists of the basic equipment and the integrated information system for operating and controlling automated equipments. The productivity of ACT is maximized through efficient connection between them. Thus, the automated degree of container terminal is dependent on the developing time of operating system, reliability, transportation quantity of container, investment amount and technical level. In this paper, we propose important strategy in developing ACT through analyzing the property of each ACT.

  • PDF

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (초대형 컨테이너 선박의 생산성 및 효율성 분석 -부산항을 중심으로-)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.121-122
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (부산항 터미널별 선박 규모에 따른 선석 생산성 및 항만 효율성 비교분석)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.72-73
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF

Conceptual Design for Mooring Stability System and Equipments of Mobile Harbor (모바일하버 선박의 계류안정화시스템 및 의장장치 개념설계)

  • Lee, Yun-Sok;Jeong, Tae-Gwon;Jung, Chang-Hyun;Kim, Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.311-317
    • /
    • 2010
  • Mobile Harbor(MH) is a new paradigm for maritime transport system introduced in Korea, the target of which is to carry out ship-to-ship cargo operation rapidly and effectively even under a condition of sea state 3. A MH ship is moored alongside a large container vessel anchored at the defined anchorage and also equipped with gantry cranes for handling containers. The MH study concerned includes rapid container handling system, optimum design for floating structure, hybrid berthing & cargo operation system, design for cargo handling crane, etc. This paper is to deal with a conceptual design of a stabilized mooring system and mooring equipment under a condition of ship-to-ship mooring. In this connection, we suggest a positioning control winch system in order to control heave motions of the MH ship which is to add constant brakepower and stabilized function to an auto-tension winch and mooring equipment used currently in large container ships.

Hydrodynamic interactions and coupled dynamics between a container ship and multiple mobile harbors

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.217-228
    • /
    • 2012
  • As the size of container ships continues to increase, not many existing harbors can host the super-container ship due to its increased draft and the corresponding dredging requires huge budget. In addition, the minimization of waiting and loading/offloading time is the most important factor in harbor competitiveness. In this regard, mobile-harbor concept has been developed in Korea to achieve much improved harbor capacity and efficiency. In developing the concept, one of the most important elements is the operability of crane between two or more floating bodies in side-by-side arrangement. The container ship is to be stationed through a hawser connection to an outside-harbor fixed-pile station with the depth allowing its large draft. The mobile harbors with smart cranes are berthed to the sides of its hull for loading/offloading containers and transportation. For successful operation, the relative motions between the two or more floating bodies with hawser/fender connections have to be within allowable range. Therefore, the reliable prediction of the relative motions of the multiple floating bodies with realistic mooring system is essential to find the best hull particulars, hawser/mooring/fender arrangement, and crane/docking-station design. Time-domain multi-hull-mooring coupled dynamic analysis program is used to assess the hydrodynamic interactions among the multiple floating bodies and the global performance of the system. Both collinear and non-collinear wind-wave-current environments are applied to the system. It is found that the non-collinear case can equally be functional in dynamics view compared to the collinear case but undesirable phenomena associated with vessel responses and hawser tensions can also happen at certain conditions, so more care needs to be taken.

On the Selection of Hydraulic System for Hatch Cover (Hatch Cover의 유압장치의 선정에 관한 연구)

  • Kim, Hyeong-Su
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.157-168
    • /
    • 1985
  • In cargo vessels, hatch covers are used to prevent sea water from penetrating into the cargo hold and to keep the vessels buoyant. And also they can be used as cargo loading devices as in container ships. In this paper, hatch covers are classified according to their operation method and their characteristics are briefly demonstrated. Systematic description on the scantling of the hatch cover panel and how to determine the capacity of the hydraulic power system fir folding hatch cover panels are also presented. The hydraulic power system is selected from the result of dynamic analysis of the movements of the hatch cover panels when stored on the upper deck. The hatch coaming height is determined as shortly as the hydraulic cylinders can be installed. This study deals with the hatch cover system of the medium sized multi-purpose cargo vessel, but the results of this study can be applied to large-sized cargo vessels with a slight change of the input data in the calculations. Further research on the high pressure pump, hydraulic cleating system and hydraulic piping will realize domestic production of the whole hatch cover system which have been supplied from foreign makers until now

  • PDF