• Title/Summary/Keyword: Large Slope

Search Result 781, Processing Time 0.024 seconds

Engineering Application of Direct Shear Box Test for Slope Stability Problem (사면 안정 문제에 대한 직접 전단 시험의 공학적 적용)

  • Ikejiri, Katsutoshi;Shibuya, Satoru;Jung, Min-Su;Chae, Jong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.65-73
    • /
    • 2008
  • In the current practice for slope stability problem in Japan, the shear strength, $\tau$, mobilized along the failure surface is usually estimated based on an empirical approximation in which the cohesion, c, is assumed to be equal to the soil thickness above the supposed slip surface, d(m). This approximation is advantageous in that the result of stability analysis is not influenced by the designers in charge. However, since the methodology has little theoretical background, the cohesion may often be grossly overestimated, and conversely the angle of shear resistance, $\phi$, is significantly underestimated, when the soil thickness above the supposed slip surface is quite large. In this paper, a case record of natural slope failure that took place in Hyogo Prefecture in 2007, is described in detail for the case in which the shear strength along the collapsed surface was carefully examined in a series of direct shear box (DSB) tests by considering the effects of in-situ shear stress along the slip surface. It is demonstrated that the factor of safety agrees with that of in-situ conditions when the shear strength from this kind of DSB test was employed for the back-analysis of the slope failure.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.

A Study on Stabilization of the Collapsed Slope due to Gyeongju Earthquake at Seokguram Access Road based on Geological Investigation (지질학적 조사를 바탕으로 한 경주지진으로 붕괴된 석굴암 진입도로 비탈면의 안정성 평가에 관한 연구)

  • Kim, Seung-Hyun;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.225-242
    • /
    • 2019
  • Rockfall failure at the access road to Seokguram were occurred due to the earthquake on September 12, 2016. A detailed investigation was carried out in order to find out the cause of the rockfall, to identify the risk of the entire sites, and to prepare proper countermeasure methods and mitigation. We checked for geological and topographical characteristics of overall slopes alongside the access road to Seokguram and made a face map. In addition, we analyzed topographical factors caused by the earthquake through calculating a degree of slope, degree of bearing, upslope contributing area, and wetness index with the use of shading relief map. As a result, we confirmed that the large rockfall occurred with a weak section. In this study, we also evaluated the overall slope stability of the entire access road to Seokguram in order to classify it into danger and caution zones depending on the risk of collapse.

Assesment on the Characteristics of Foundation Bearing Capacity in Reinforced Soil Wall Structure of Large Scale (대규모 보강토옹벽 구조물에서의 기초지반 지지력특성 평가)

  • Han, Jung-Geun;Yoo, Seung-Kyung;Cho, Sam-Deuk;Lee, Kyang-Woo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • The reinforced soil retaining wall structures of serious types with environmental are widely expanding more and more in Korea, which divided conventional type's reinforced soil retaining wall on segmental retaining wall. The causes of most crack occurred at block in reinforced soil retaining wall structure caused by the differential settlement of foundation. It is difference of settlement for significant factor that with overall slope stability. In this study, design assessment of foundation bearing capacity related to differential settlement of foundation ground was considered. And, also, through case study, the countermeasure methods and its application were suggested that the bearing capacity of foundation had to stabilize. The foundation ground in charge of bearing capacity should be affected by the resisting force of sliding, because the foundation parts of reinforced soil retaining wall were belongs to potential slope sliding area in overall stabilizing including retaining wall structures. Therefore, the analyzing or the designing of bearing capacity for foundation should be considered control capacity on the overall slope sliding.

  • PDF

Slope Stability Analysis according to Repeated Freezing and Thawing of the Soil (토질의 동결 융해 반복에 따른 사면의 안정성에 관한 연구)

  • Shin, Eun Chul;Shin, Hui Su;Gyu, Jung Cheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.43-51
    • /
    • 2015
  • In seasonal frozen areas which have a temperature difference in the winter and spring season like south korea, if stiffness reduction by repeated freezing and thawing occurs to slopes adjacent to private facilities or mountain slopes, safety factor is insufficient to design criteria and landslide could be occurs due to rainfall or snowfall. It can lead to large damage of human life and property. In this study, in order to examine the safety changes of mountain slopes by repeated freezing and thawing, soil samples series of SP and SM by USCS distributed in surface soil of mountain slopes were collected for specimens. Through the direct shear test, the characterestics of frozen soil shear strength were analyzed and by utilizing numerical methods, chracteristics of strength reduction of weathered granite soil according to repeated action of freezing and thawing, changes in the stability of the slopes when applying freezing and thawing of the soil samples were examined. As a result, the maximum shear stress decreased approximately 10%, and slope stability analysis confirmed that required safety factor is less than compare with the non-frozen samples.

Vegetation structure of the Adenophora remotiflora population;Focusing on community Danmoknyeong in Jeombongsan of Gangwon-do (모시대(Adenophora remotiflora) 개체군의 식생구조에 관한 연구;강원도 점봉산 단목령을 중심으로)

  • Choo, Byung-Kil;Ji, Yun-Ui;Moon, Byeong-Cheol;Yoon, Tae-Sook;Chae, Sung-Wook;Kim, Ho-Kyoung
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.1
    • /
    • pp.117-121
    • /
    • 2008
  • Objectives : This study was carried out to investigate vegetation structure of Adenophora remotiflora population found to be distributed in Jeombongsan Danmokryeong. Methods : From 2007 June until November, $2m{\times}2m$ quadrat was established in Adenophora remotiflora community in order to record a dominants and coverage. Results : 1. The vegetation of Adenophora remotiflora community was classified into Astilbe chinensis subcommunity and Calamagrostis langsdodfii subcommunity. Differential species of community was Angelica deacrusica and Lychnis cognata. The Adenophora remotiflora community was found in south face, high of altitude and low slope degree. 2. The value of species diversity ranged from 5.547152 to 10.077886, euenness ranged from 0.779749 to 0.986358 and dominance ranged from 0.013642 to 0.220251. 3. Aconitum jaluense was located at the higher altitudes than those of other species. Lychnis cognata, Lychnis cognata and Pedicularis resupinata was located at the lower altitudes and slope degree than those of other species. Conclusions : The vegetation of Adenophora remotiflora community was classified into Astilbe chinensis subcommunity and Calamagrostis langsdodfii subcommunity. The value of species diversity was low and community was dominated by a large number species. The Adenophora remotiflora community was found in south face, high of altitude and low slope degree.

  • PDF

A Study on the Slope Stability of Embankment in Consideration of Seismic Coefficient (지진계수를 고려한 제방의 사면안정에 관한 연구)

  • 강우묵;지인택;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.105-120
    • /
    • 1991
  • This study was performed to investigate the minimum safety factor of embankment in consideration of seismic coefficient by the psuedo-static analysis The variables were cohesion, the internal friction angle, angle of slope, height of seepage, height of embankment, depth of replacement The results obtained were compared with those by Fellenius method, simplified Bishop method and Janbu method. The results were summarized as follows: 1.The increasing rate of the minimum safety factor with the increasing of cohesion appeared larger in Fellenius method and Bishop method than in Janbu method. And that with the increasing of the internal friction angle appeared the lowest value in Janbu method. The minimum safety factor was influenced larger on the internal friction angle than on cohesion. 2.The variation of the minimum safety factor with the height of seepage at 0m and 5 m was nearly similar to Fellenius method, Bishop method and Janbu method. On the other hand, it was decreased suddenly at 25 m. 3.The minimum safety factor with the height of embankment was decreased remarkably under 10 m with the increasing of seismic coefficient. But, it was decreased slowly more than 10 m. As the height of embankment was low, the influence of cohesion appeared larger. 4.In heigher case of the depth of replacement, the phenomenon of reduction of the minimum safety factor appeared remarkably with seismic coefficient increased. And in lower case of the depth of replacement, the minimum safety factor was similar in Fellenius method and Bishop mehtod. But it appeared larger in Bishop method and Janbu method than in Fellenius method with the depth of replacement increased. 5.As the cohesion and the internal friction angle were large, the phenomenon of reduction of the minimum safety factor with the increasing of seismic coefficient appeared remarkably. Also, the influence of seismic coefficient in minimum safety factor appeared larger with the soil parameter increased. 6.When the seismic coefficient was considerated, investigation of the structural body on the slope stability appeared profitably in Fellenius method and Janbu method than in Bishop method.

  • PDF

Monitoring the Hydrologic Water Quality Characteristics of Discharge from a Flat Upland Field (평지 전작 유출수의 수문·수질 특성 모니터링)

  • Park, Chanwoo;Oh, Chansung;Choi, Soon-Kun;Na, Chae-in;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.109-121
    • /
    • 2020
  • Converting the agricultural land-use of rice field to upland has been increasingly conducted as farmers encourages themselves to grow higher value-added crops on rice fields under the policy support. Comparing to rice field, Upland shows different characteristic of discharge due to the slope, scale, and shape of field and characteristics of rainfall event. In this study, we designed the experiment fields reflecting flat-upland characteristics with different land scale, and tried to collect the discharge and load data. Soybeans and corn were selected as target crops considering the possibility of large-scale cultivation and crop demand. The cultivation was conducted during the growth period in 2019 with 3 different field scales. Hence, we have collected the discharge data from 17 rainfall events and the load data for 8 rainfall events. As a result, the magnitude of rainfall events and the discharge duration were found to have a strong positive correlation and field discharge occurred during the period by 55% to 83% of rainfall duration. Besides we found other relationships and characteristics of rainfall event, discharge, and pollutant load and also pointed out that continuous monitoring and more data are required to derive statistically significant results. Compared with slope-field monitoring data obtained from the precedent research, the runoff ratio of the flat-fields was significantly lower than slope-fields. Overall the discharge in the slop and flat-fields shows appreciably different characteristics so that the related researches need to be further conducted to reasonably assess environmental impact of agricultural activities at flat-field.

POWER SPECTRUM ANALYSIS OF THE OMC1 IMAGE AT 1.1MM WAVELENGTH

  • Youn, So-Young;Kim, Sung-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.4
    • /
    • pp.93-99
    • /
    • 2012
  • We present a 1.1mm emission map of the OMC1 region observed with AzTEC, a new large-format array composed of 144 silicon-nitride micromesh bolometers, that was in use at the James Clerk Maxwell Telescope (JCMT). These AzTEC observations reveal dozens of cloud cores and a tail of filaments in a manner that is almost identical to the submillimeter continuum emission of the entire OMC1 region at 450 and $850{\mu}m$. We perform Fourier analysis of the image with a modified periodogram and the density power spectrum, which provides the distribution of the length scale of the structures, is determined. The expected value of the periodogram converges to the resulting power spectrum in the mean squared sense. The present analysis reveals that the power spectrum steepens at relatively smaller scales. At larger scales, the spectrum flattens and the power law becomes shallower. The power spectra of the 1.1mm emission show clear deviations from a single power law. We find that at least three components of power law might be fitted to the calculated power spectrum of the 1.1mm emission. The slope of the best fit power law, ${\gamma}{\approx}-2.7$ is similar to those values found in numerical simulations. The effect of beam size and the noise spectrum on the shape and slope of the power spectrum are also included in the present analysis. The slope of the power law changes significantly at higher spatial frequency as the beam size increases.

Seismic control of structures using sloped bottom tuned liquid dampers

  • Bhosale, Amardeep D.;Murudi, Mohan M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.233-241
    • /
    • 2017
  • Earlier numerous studies have been done on implementation of Tuned Liquid Damper (TLD) for structural vibration control by many researchers. As per current review there is no significant study on a sloped bottom TLD. TLD's are passive devices. A TLD is a tank rigidly attached to the structure and filled partially by liquid. When fundamental linear sloshing frequency is tuned to structure's natural frequency large sloshing amplitude is expected. In this study set of experiments are conducted on flat bottom and sloped bottom TLD at beach slope $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$, for different types of structures, mass ratio, and depth ratio to investigate the overall effectiveness of TLD and specific effect of TLD parameters on structural response. This experimental study shows that a properly designed TLD reduces structural response. It is also observed that effectiveness of TLD increases with increase in mass ratio. In this experimental study an effectiveness of sloped bottom TLD with beach slope $30^{\circ}$ is investigated and compared with that of flat bottom TLD in reducing the structural response. It is observed from this study that efficiency of sloped bottom TLD in reducing the response of structure is more as compared to that of flat bottom TLD. It is shown that there is good agreement between numerical simulation of flat bottom and sloped bottom TLD and its experimental results. Also an attempt has been made to investigate the effectiveness of sloped bottom TLD with beach slope $20^{\circ}$ and $45^{\circ}$.