• Title/Summary/Keyword: Large Scale Data

Search Result 2,796, Processing Time 0.038 seconds

Removing Large-scale Variations in Regularly and Irregularly Spaced Data

  • Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.43.2-43.2
    • /
    • 2019
  • In many astrophysical systems, smooth large-scale variations coexist with small-scale fluctuations. For example, a large-scale velocity or density gradient can exist in molecular clouds that have small-scale fluctuations by turbulence. In redshifted 21cm observations, we also have two types of signals - the Galactic foreground emissions that change smoothly and the redshifted 21cm signals that fluctuate fast in frequency space. In many cases, the large-scale variations make it difficult to extract information on small-scale fluctuations. We propose a simple technique to remove smooth large-scale variations. Our technique relies on multi-point structure functions and can obtain the magnitudes of small-scale fluctuations. It can also be used to design filters that can remove large-scale variations and retrieve small-scale data. We discuss how to apply our technique to irregularly spaced data, such as rotation measure observations toward extragalactic radio point sources.

  • PDF

Analysis on NDN Testbeds for Large-scale Scientific Data: Status, Applications, Features, and Issues (과학 빅데이터를 위한 엔디엔 테스트베드 분석: 현황, 응용, 특징, 그리고 이슈)

  • Lim, Huhnkuk;Sin, Gwangcheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.904-913
    • /
    • 2020
  • As the data volumes and complexity rapidly increase, data-intensive science handling large-scale scientific data needs to investigate new techniques for intelligent storage and data distribution over networks. Recently, Named Data Networking (NDN) and data-intensive science communities have inspired innovative changes in distribution and management for large-scale experimental data. In this article, analysis on NDN testbeds for large-scale scientific data such as climate science data and High Energy Physics (HEP) data is presented. This article is the first attempt to analyze existing NDN testbeds for large-scale scientific data. NDN testbeds for large-scale scientific data are described and discussed in terms of status, NDN-based application, and features, which are NDN testbed instance for climate science, NDN testbed instance for both climate science and HEP, and the NDN testbed in SANDIE project. Finally various issues to prevent pitfalls in NDN testbed establishment for large-scale scientific data are analyzed and discussed, which are drawn from the descriptions of NDN testbeds and features on them.

Classification of large-scale data and data batch stream with forward stagewise algorithm (전진적 단계 알고리즘을 이용한 대용량 데이터와 순차적 배치 데이터의 분류)

  • Yoon, Young Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1283-1291
    • /
    • 2014
  • In this paper, we propose forward stagewise algorithm when data are very large or coming in batches sequentially over time. In this situation, ordinary boosting algorithm for large scale data and data batch stream may be greedy and have worse performance with class noise situations. To overcome those and apply to large scale data or data batch stream, we modify the forward stagewise algorithm. This algorithm has better results for both large scale data and data batch stream with or without concept drift on simulated data and real data sets than boosting algorithms.

Boosting Algorithms for Large-Scale Data and Data Batch Stream (대용량 자료와 순차적 자료를 위한 부스팅 알고리즘)

  • Yoon, Young-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.197-206
    • /
    • 2010
  • In this paper, we propose boosting algorithms when data are very large or coming in batches sequentially over time. In this situation, ordinary boosting algorithm may be inappropriate because it requires the availability of all of the training set at once. To apply to large scale data or data batch stream, we modify the AdaBoost and Arc-x4. These algorithms have good results for both large scale data and data batch stream with or without concept drift on simulated data and real data sets.

Level Scale Interface Design for Real-Time Visualizing Large-Scale Data (대용량 자료 실시간 시각화를 위한 레벨 수준 표현 인터페이스 설계)

  • Lee, Do-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.105-111
    • /
    • 2008
  • Various visualizing methods have been proposed according to the input and output types. To show complex and large-scale raw data and information. LOD and special region scale method have been used for them. In this paper, I propose level scale interface for dynamic and interactive controlling large scale data such as bio-data. The method has not only advantage of LOD and special region scale but also dynamic and real-time processing. In addition, the method supports elaborate control from large scale to small one for visualization on a region in detail. Proposed method was adopted for genome relationship visualization tool and showed reasonable control method.

  • PDF

GOMS: Large-scale ontology management system using graph databases

  • Lee, Chun-Hee;Kang, Dong-oh
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.780-793
    • /
    • 2022
  • Large-scale ontology management is one of the main issues when using ontology data practically. Although many approaches have been proposed in relational database management systems (RDBMSs) or object-oriented DBMSs (OODBMSs) to develop large-scale ontology management systems, they have several limitations because ontology data structures are intrinsically different from traditional data structures in RDBMSs or OODBMSs. In addition, users have difficulty using ontology data because many terminologies (ontology nodes) in large-scale ontology data match with a given string keyword. Therefore, in this study, we propose a (graph database-based ontology management system (GOMS) to efficiently manage large-scale ontology data. GOMS uses a graph DBMS and provides new query templates to help users find key concepts or instances. Furthermore, to run queries with multiple joins and path conditions efficiently, we propose GOMS encoding as a filtering tool and develop hash-based join processing algorithms in the graph DBMS. Finally, we experimentally show that GOMS can process various types of queries efficiently.

Robust Hierarchical Data Fusion Scheme for Large-Scale Sensor Network

  • Song, Il Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The advanced driver assistant system (ADAS) requires the collection of a large amount of information including road conditions, environment, vehicle status, condition of the driver, and other useful data. In this regard, large-scale sensor networks can be an appropriate solution since they have been designed for this purpose. Recent advances in sensor network technology have enabled the management and monitoring of large-scale tasks such as the monitoring of road surface temperature on a highway. In this paper, we consider the estimation and fusion problems of the large-scale sensor networks used in the ADAS. Hierarchical fusion architecture is proposed for an arbitrary topology of the large-scale sensor network. A robust cluster estimator is proposed to achieve robustness of the network against outliers or failure of sensors. Lastly, a robust hierarchical data fusion scheme is proposed for the communication channel between the clusters and fusion center, considering the non-Gaussian channel noise, which is typical in communication systems.

A Real-Time Rendering Algorithm of Large-Scale Point Clouds or Polygon Meshes Using GLSL (대규모 점군 및 폴리곤 모델의 GLSL 기반 실시간 렌더링 알고리즘)

  • Park, Sangkun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.294-304
    • /
    • 2014
  • This paper presents a real-time rendering algorithm of large-scale geometric data using GLSL (OpenGL shading language). It details the VAO (vertex array object) and VBO(vertex buffer object) to be used for up-loading the large-scale point clouds and polygon meshes to a graphic video memory, and describes the shader program composed by a vertex shader and a fragment shader, which manipulates those large-scale data to be rendered by GPU. In addition, we explain the global rendering procedure that creates and runs the shader program with the VAO and VBO. Finally, a rendering performance will be measured with application examples, from which it will be demonstrated that the proposed algorithm enables a real-time rendering of large amount of geometric data, almost impossible to carry out by previous techniques.

Development of Integrated Transportation Analysis System for Large-scale event (대형 이벤트 대응형 통합교통분석 시스템 개발)

  • Lim, Sung-Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • This study deals with development of Integrated Transportation Analysis System for Large-scale event. Based on case studies, the requirements of the system were defined and the direction of development was established. The large-scale events that require fast and accurate transportation policy were selected. The data warehouse and data mart were developed by integrating the large-scale event data and the traffic data. Business intelligence system was designed and developed users to allow timely decisions.

Privacy Enhanced Data Security Mechanism in a Large-Scale Distributed Computing System for HTC and MTC

  • Rho, Seungwoo;Park, Sangbae;Hwang, Soonwook
    • International Journal of Contents
    • /
    • v.12 no.2
    • /
    • pp.6-11
    • /
    • 2016
  • We developed a pilot-job based large-scale distributed computing system to support HTC and MTC, called HTCaaS (High-Throughput Computing as a Service), which helps scientists solve large-scale scientific problems in areas such as pharmaceutical domains, high-energy physics, nuclear physics and bio science. Since most of these problems involve critical data that affect the national economy and activate basic industries, data privacy is a very important issue. In this paper, we implement a privacy enhanced data security mechanism to support HTC and MTC in a large-scale distributed computing system and show how this technique affects performance in our system. With this mechanism, users can securely store data in our system.