• Title/Summary/Keyword: Large Rotor

Search Result 362, Processing Time 0.025 seconds

Low Speed Operation of Simplified Sensorless Control of Synchronous Reluctance Motor (동기형 릴럭턴스 전동기의 단순구조형 센서리스 제어의 저속운전)

  • Ahn, Joon-Seon;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.61-68
    • /
    • 2006
  • Many researchers have worked for the sensorless control of SynRM in recent years. However they commonly requires large calculations which induced from its complexity. For low cost application as like home appliance, it is difficult to utilize because of the cost problem. Therefore, it is necessary to introduce simplified sensorless control scheme that is composed of least calculation to estimate the rotor position. In this paper the sensorless control is performed using the characteristics of SynRM structure in which the linkage flux varies with rotor position, so the rotor position can be detected by the change of linkage flux. The estimation of linkage flux can be acquired from the integration of the motor terminal voltage which is commonly used method for the reliability of the estimation. However this estimation method has demerits in low speed operation therefore in that region the motor terminal voltage is compensated by the phase current. A digital simulation (MATLAB) and experiment were performed to confirm the adequacy of the proposed control scheme.

Rotordynamic Design of Turbine for Large Capacity Pump drive (대용량 펌프 구동용 터빈의 로터다이나믹 설계)

  • 김영춘;박철현;김경웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.116-120
    • /
    • 2003
  • In general, industrial rotating machinery have been designed to have critical speed that is above operating speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed and high performance of rotating machinery. Therefore, it is important to predict the accuracy rotordynamic characteristics of the high speed rotating system in advance. In this paper, the results of rotordynamic analysis about FWP(Feed Water Pump) drive turbine rotor are showed. Because the FWP drive turbine analyzed is high speed machinery operated more than the operation speed of conventional FWP drive turbine, Seismic response analysis as well as unbalance response analysis is done in order to improve the reliability of the new turbine rotor-bearing system.

  • PDF

A Numerical Study on the Effect of Tip Clearance on the Performance of Turbine Rotor (터빈 로터의 익단 간극이 성능에 미치는 영향에 대한 수치해석적 연구)

  • Kang, Young-Seok;Kang, Shin-Hyoung;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.7-14
    • /
    • 2002
  • The effect of tip clearance is important part for turbomachinery performance. Tip leakage flow due to tip clearance is mixed with passage vortex. Large amount of loss is generated at the mixing region and overall performance of turbomachinery is reduced. Numerical calculation of the 1st stage rotor of GE7FA gas turbine is carried out to investigate tip clearance effect on performance, pitchwise variations of velocity profiles, pressure distributions and loss coefficients. A commercial code, CFX-TascFlow is validated in this study.

Transient Analysis of Induction Motors using Finite Element Method (유한요소법을 이용한 유도전동기의 기동특성 해석)

  • Kim, Young-Sun;Lee, Bok-Yong;Lee, Hyang-Beom;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.306-308
    • /
    • 1997
  • In this paper, We present the transient analysis method of induction motor by TDFE(Time Domain Finite Element) method. For simulation of transient performance, Maxwell's equations are solved using 2-Dimensional TDFE method, and the circuit equations from the stator and rotor are solved simultaneously. The time derivatives are discretized with Euler scheme and the Newton-Raphson iteration method is applied to a large system of equations which are representing the whole magnetic and feeding circuit equations because of the magnetic nonlinearity of the stator and rotor core. The presented method is applied to three phase induction motor. And we obtained the phase currents, torque and rotor position until the steady state.

  • PDF

Aeroelastic Stability Analysis of Composite Bearingless Rotor Blades in Hover (복합재 무베어링 로우터 블레이드의 정지 비행시 공력탄성학적 안정성 해석)

  • Lim In-Gyu;Choi Ji-Hoon;Lee In;Han Jae-Hung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.83-86
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube root. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory and Loewy's aerodynamic theory with the lift deficiency function are used for unsteady aerodynamic computation. The finite element equations of motion for beams are obtained using Hamilton's principle. Numerical results of selected bearingless rotor configurations are obtained for the lay-up of laminae in the flexbeam and pitch links location.

  • PDF

Development of Unmanned Remote Monitoring System for MW Class Wind Turbines (대형 풍력터빈을 위한 무인 원격감시시스템 개발)

  • Park, Joon-Young;Kim, Beom-Joo;Lee, Jae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.412-418
    • /
    • 2011
  • The scale of wind turbines has continuously increased over the last decade. Especially, the rapid growth of the rotor diameter has brought about the increase of the tower height and the load on the rotor blade, as can be seen in the case of a 5MW class wind turbine with 126m rotor diameter. This trend means the increasing possibility of system failure. In addition to that, it is impossible for human operators to stay and manage all the turbines in the case of a large-scale wind farm. For these reasons, the operation and maintenance technology is getting more importance. In this paper, we present an unmanned remote monitoring system for MW class wind turbines and its application to YeungHeung wind test bed.

Development of Shorted-Turn Diagnosis system for Generator Rotor Winding (발전기 회전자 권선의 층간단락 진단시스템 개발)

  • Lee, Yeong-Jun;Kim, Hui-Dong;Ju, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.11
    • /
    • pp.742-747
    • /
    • 1999
  • On-line diagnosis system has been developed and is now applied the detection of shorted turns in the field winding of large generator. This system consists of data aquisition system and display PC. The data aquisition system detects voltage waveforms from flux probe sensor installed in the stator slot. The display PC shows theshorted-turn situation of generator rotor winding. A shorted-turn diagnosis test wasperformed on five gas turbine generators at the Seoinchon combined cycle power plant. The test was conducted using an new diagnosis system and digital oscilloscope which can identify the pole location, the slot number and the number of shorted turns within each slot. It is confirmed that results of two systems are very same in the field tests.

  • PDF

The Study on a Dynamic Analysis of Permanent Magnet Generator considering Overhang Effect (오버행을 고려한 영구자석 동기 발전기의 동특성 해석 연구)

  • Kim, Ki-Chan;Lee, Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.58-62
    • /
    • 2006
  • The purpose of this paper is characteristic analysis of permanent magnet generator (PMG) for automatic voltage regulator (AVR)power of brush less synchronous generator. However, this PMG has a spoke type permanent magnet rotor with large overhang for high power density, characteristic analysis considering concentration effect of air-gap flux density due to the overhang should be performed. 30 transient finite element method (FEM)analysis is good solution for overhang parameter, but this method needs too much calculation time. In this paper, we examined the overhang effects based on overhang length and material of rotor core by using 20 and 30 static FEM analysis, and proposed 20 dynamic FEA model considering overhang parameter which gives good and rapid results. The proposed method is verified by the test results of no load, load and short circuit test.

  • PDF

Analytical Estimation of Inductance at Aligned and Unaligned Rotor Positions in a Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 회전자 정렬과 비정렬 위치에서의 인덕턴스 예측)

  • Lee, Chee-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Flux linkage of phase windings or phase inductance is an important parameter in determining the behavior of a switched reluctance motor (SRM) [1-8]. Therefore, the accurate prediction of inductance at aligned and unaligned rotor positions makes a significant contribution to the design of an SRM and its analytical approach is not straightforward due to nonlinear flux distribution. Although several different approaches using a finite element analysis (FEA) or curve-fitting tool have been employed to compute phase inductance [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase inductance at aligned and unaligned rotor positions is estimated by means of numerical method and magnetic equivalent circuit as well, and the proposed approach is analytically verified in terms of the accuracy of estimated inductance compared to inductance computed by an FEA simulation.

Electromagnetic Characteristics Analysis of Generator with the shorted turn rotor field winding (발전기 회전자 턴 단락 현상에 따른 전자계 특성 해석)

  • Jo, Won-Yeong;Kim, Byeong-Guk;Jo, Yun-Hyeon;Hwang, Don-Ha;Gang, Dong-Sik;Kim, Yong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.35-37
    • /
    • 2005
  • Large generators are subject to high mechanical and electrical stress which may lead to deterioration of the insulation. The rotors, in particular, may develop short circuits particularly and there is a need for the operators to be aware of this situation. In this paper, the electromagnetic characteristics of the generator with shorted turns in rotor field winging is analyzed by FEM and the detection algorithm method of the shorted turn rotor slot position is proposed.

  • PDF