• 제목/요약/키워드: Large Rotor

검색결과 362건 처리시간 0.025초

축류압축기 CFD를 위한 대표적 Test Case (Typical Test Case for the CFD Validation of Axial Compressors)

  • 주원구
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.141-146
    • /
    • 1999
  • The comming of high speed computers with large memory size in recent years has allowed the practical development of codes which solve the Reynolds-averaged NAvier-Stokes (RANS) equations in three dimensions. Such codes are already used by the large engine manufacturers for the advanced design of some engine components. Different computational fluid dynamics approaches and turbulence models exist, and it seems essential today to establish their degree of validity for application to typical configurations in turbomachinery. In 1993 the Turbomachinery Committee of the IGTI of ASME has issued an open invitation to predict the flow details of an isolated transonic fan rotor called as NASA ROTOR 37. This paper reports this test case.

  • PDF

복합재 헬리콥터 로터 허브 시스템의 제작 및 기본 물리량 시험 (Manufacturing Process and Basic Property Tests of Composite Helicopter Rotor Hub System)

  • 기영중;김태주;윤철용;김덕관
    • 대한기계학회논문집A
    • /
    • 제38권6호
    • /
    • pp.691-698
    • /
    • 2014
  • 본 논문에서는 복합재료를 이용하여 플렉스빔과 토크튜브를 제작하기 위한 공정과 기본 물리량 시험과정을 소개하였다. 플렉스빔과 토크튜브는 헬리콥터에 적용되는 무베어링 로터 허브 시스템을 구성하기 위한 핵심 구성품이다. 토크튜브는 블레이드의 피치각을 변화시키기 위한 조종력을 전달하며, 플렉스빔은 구조적인 변형을 통해 플랩, 래그 및 페더링 힌지를 구현하는 기능을 담당한다. 지상회전시험을 수행하기에 앞서 플렉스빔과 토크튜브 및 블레이드의 플랩강성, 래그강성 및 토션강성을 측정하기 위한 기본 물리량 시험을 수행하였다. 또한, 해석을 통해 예측된 단면 강성과 기본 물리량을 통해 획득된 강성 값을 비교하였으며, 그 결과를 통해 복합재료로 제작된 플렉스빔과 토크튜브가 구조적인 강성 요구도를 만족함을 확인할 수 있었다.

반응표면분석법을 이용한 영구자석의 형상 및 특성에 따른 매입형 영구자석 동기기의 최적 설계 (Optimal Design of Interior Permanent Magnet Synchronous Machines Consideration of Magnet BH Characteristic with Different Rotor Type using Response Surface Methodology)

  • 임영훈;장석명
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1080-1089
    • /
    • 2013
  • Interior Permanent Magnet Synchronous Machines (IPMSMs) with rare earth magnet are widely used in electric vehicles and hybrid electric vehicles. IPMSMs having high efficiency, high torque, and a wide speed range are employed in propulsion system. And the rotor in an IPMSM is generally made of a rare earth magnet to achieve a large energy product and high torque. This paper discusses issues regarding design and performance of IPMSMs using different factors of BH magnetic characteristic. It is necessary to choose factors of magnetic material according to permanent magnet shape in rotor for high performance. Response Surface Methodology (RSM) is selected to obtain factors of magnetic material according to variety of rotor shapes. The RSM is a collection of mathematical and statistical techniques useful for the analysis of problems in which a response of interest in influenced by several variables and the objective is to optimize response. Therefore, it is necessary to analyze the torque characteristics of an IPMSM having magnet BH hysteresis curve with different rotor shape. Factors of residual flux density (Br) factor and intrinsic coercive force (Hc) are important parameters in RSM for rotor shape. The rotor shapes for IPMSMs having magnet BH characteristic were investigated using the RSM, and three shapes were analyzed in detail using FEA. The results lead to design consequence of IPMSMs in the various rare earth magnet materials.

彈性回轉體의 평형잡이에 관한 연구 (New Balancing Method of a Flexible Rotor Without Trial Weights)

  • 양보석;암호탁삼
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.409-418
    • /
    • 1988
  • 본 연구에서는 상반상반정리가 성립되는 선형계의 경우에 있어서 회전체를 회 전시키지 않고 시험추도 사용하지 않으며 베어링부를 가진하는 것에 의한 영향계수 측 정법을 제안한다. 대상으로 하는 영향계수는 베어링부와 각 수정점 사이의 영향계수 로서 비회전가진실험에 의해 베어링부에 힘을 가한 경우의 각 수정점에서의 비회전 영 향계수를 측정한다. 회전시험에서는 베어링부에 시험추를 부가하는 것이 구조상 곤 란하므로 각 수정점에 시험추를 부착하여 각 수정점에 힘을 가한 경우에 대한 베어링 부에서의 영향계수를 측정한다.그리고 수치계산으로 전달매트릭스법에 의해 베어링 부에 시험추를 부착하고 회전체를 회전시켜 각 수정점에서의 회전영향계수를 계산하고 실험결과와 비교한다. 상에서 구하여진 비회전과 회전영향계수의 실험결과를 비교하 므로서 비회전 영향계수의 특성을 파악하고, 이를 이용하여 탄성회전체의 평형잡이를 하는 새로운 방법을 제안한다.

적층로터의 강성 변경을 위한 적층판 압착력의 영향 (Effect of lamination pressing force for stiffness variation of a laminated rotor)

  • 김영춘;박희주;김경웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.788-792
    • /
    • 2003
  • Rotating machines are widely used in industrial world and especially motor and generator take up much part of it. As for this kind of motor and generator, electrical loss due to eddy current is the very important factor and that is also a primary factor causes heat generation. To solve this kind of problem like the above. insulated laminating silicon steel sheet is used to prevent eddy current effect. Laminated rotor is widely used as rotating shaft of motor and generator. Due to that, electrical loss and heat problem can be solved but designer meets another problem. In general. most of the motor and generator can be normally operated under 3,600 rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed, large scale and high precision in industrial world. The critical speed can be determined from the inertia and stillness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape, lamination material and shape, insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method and design criteria will be presented for motor & generator designer, who can apply the result of numerical analysis with equivalent diameter scheme with ease.

  • PDF

Adaptive Gain-based Stable Power Smoothing of a DFIG

  • Lee, Hyewon;Hwang, Min;Lee, Jinsik;Muljadi, Eduard;Jung, Hong-Ju;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2099-2105
    • /
    • 2017
  • In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. The simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.

반도체 클린룸용 세라믹 Rotor 흡착제 개발 (The Development of Absorption Elements of Ceramic Rotors for the Semiconductor Clean Room System)

  • 서동남;하종필;정미정;문인호;조상준;김익진
    • 한국산학기술학회논문지
    • /
    • 제1권2호
    • /
    • pp.33-40
    • /
    • 2000
  • 본 연구는 반도체 크린룸에서 VOC(volatile organic compound)과 수분을 제거하기 위한 흡착로타에 관한 것이다. 흡착로타는 세라믹 페이퍼 허니컴 기질에 NaX 제올라이트와 TS-1 제올라이트로 만들어졌다. NaX 제올라이트는 수열합성법으로 합성되어졌으며, NaX 제올라이트 결정(2∼3 ㎛)을 seed로 합성 조성에 3∼5 wt%까지 첨가하여 5 ㎛의 균일한 NaX 제올라이트를 성장시켰다. Seed의 첨가는 seed를 첨가하지 않은 합성용액과 비교하여 결정의 크기가 크며, 균일한 NaX 제올라이트 결정을 성공적으로 합성하였다. TS-1 제올라이트는 초기 반응액의 pH를 변화시켜 합성하였다. 반응물의 pH는 10.0에서 11.5 까지의 범위를 가지며, PH 10.4에서 큰 기공(8∼10 (equation omitted))을 가진 TS-1 제올라이트(ETS-10)가 합성되는 반면 pH가 11.5에서는 작은 기공 (3∼5 (equation omitted))을 갖는 TS-1 제올라이트(ETS-4)가 합성되었다.

  • PDF

대형 풍력로터시스템의 정적 공탄성해석을 위한 등가강성모델링 기법 적용에 관한 연구 (Study on Application of Equivalent Stiffness Modeling Method for Static Aeroelastic Analysis of Large Scale Wind Turbine Rotor System)

  • 차진현;구태완;김정;강범수;송우진
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1236-1244
    • /
    • 2012
  • A equivalent stiffness modeling has been performed for extracting the equivalent stiffness properties which are orthotropic elastic model from a large scale wind turbine rotor blade so that structure model can be constructed more simply for the three dimensional static aeroelastic analysis. In order to present the procedure of equivalent stiffness modeling, NREL 5MW class wind turbine rotor having the three stiffness information which are flapewise, edgewise and torsional stiffness was chosen. This method is based on applying unit moment at the tip of the blade as well as fixing all degree of freedom at the blade root and calculating the displacement from the load analysis to obtain the elastic modulus corresponding to equivalent stiffness referred to the NREL reports on blade divided into 5 sections respectively. In addition, one section was divided into 3 parts and the trend functions were used to make the equivalent stiffness model more correctly and quickly. Through the comparison of stiffness between the reference values and calculated values from equivalent stiffness model, the investigation of the accuracy on the stiffness values and the efficiency for constructing the model was conducted.

축류 압축기 팁 누설 유동의 비정상 특성에 관한 연구 (Unsteadiness of Tip Leakage Flow in an Axial Compressor)

  • 황유준;강신형
    • 한국유체기계학회 논문집
    • /
    • 제15권1호
    • /
    • pp.58-63
    • /
    • 2012
  • Three dimensional unsteady numerical calculations were performed to investigate unsteadiness of the tip leakage flow in an axial compressor. The first stage of the four-stage low-speed research axial compressor was examined. Since this compressor has a relatively large tip clearance, the unsteadiness of the tip leakage flow is induced. Through the results from the unsteady calculations, the process of the induced unsteady tip leakage flow was investigated. It was shown that the leakage flow that occurred at a rotor blade tip clearance affected the pressure distribution on the pressure side near the tip of the adjacent blade, thus caused the fluctuation of the pressure difference between the pressure side and suction side. Consequently, the unsteady tip leakage flow was induced at the adjacent rotor blade. The unsteady feature of the tip leakage flow was changed as the operating point was moved. The interface between the tip leakage flow and the main flow only affected the trailing edge region at the design point whereas the interface influenced up to the leading edge at the low flow rate point. As the flow rate decreased, additionally, it was seen that the vortex size of the tip leakage flow increased and the relatively large length scale disturbance occurred. On the other hand, using frequency analysis, it was shown that the unsteadiness was not associated with the rotor speed and was about 40% of the blade passing frequency. This feature was explained in the rotor relative frame of reference, and the frequency decreased as the flow rate decreased.

MW급 대용량 유도전동기 축계의 모드실험 기반 회전체 동역학 해석모델 수립 및 위험속도 예측 (Rotordynamic Model Development and Critical Speed Estimation Through Modal Testing for the Rotor-Bearing System of a MW Class Large-Capacity Induction Motor)

  • 박지수;최재학;김동준;심규호
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.279-289
    • /
    • 2020
  • In this paper, a method is proposed for establishing an approximate prediction model of rotor-dynamics through modal testing. In particular, the proposed method is applicable to systems that cannot be established according to conventional methods owing to the absence of information regarding the dimensions and material of the rotor-bearing system. The proposed method is demonstrated by employing a motor dynamometer driven by a 1 MW class induction motor without dimension and material information. The proposed method comprises a total of seven steps, wherein an initial model is established by incorporating approximate dimensions and material information, and the model is improved on the basis of the natural frequency characteristics of the system. During model improvement, the modification factor is introduced for adjusting the elastic modulus and shear modulus of the system. Analysis of critical speed and imbalance response indicates that the separation margin is 67% and the maximum vibration amplitude is less than the amplitude limit of 0.032 mm under the API 611 standard, which means that the motor dynamometer can stably operate at a rated speed of 1800 rpm. Hence, the obtained results validate the feasibility of the proposed method. Furthermore, for broad usage, it is necessary to accordingly apply and validate the proposed method for various rotor-bearing systems.