• 제목/요약/키워드: Large Rotations

검색결과 74건 처리시간 0.024초

비선형 회전 스프링 요소를 갖는 공간 프레임의 구조의 비선형 해석에 관한 연구 (A study on the nonlinear analysis of spatial frame structures with nonlinear rotational spring elements)

  • 이병채;박문식
    • 오토저널
    • /
    • 제12권2호
    • /
    • pp.29-42
    • /
    • 1990
  • Three dimensional frame structures with such nonlinearities as large displacements, medium rotations, plastic hinges and local defects are efficiently analyzed by introducing the nonlinear rotational spring. Formulations are based on the incremental updated Lagrangian descriptions and the virtual work principle, Axial displacement and twisted angle in beam elements are interpolated linearly, while bending displacements are approximated by the Hermite polynomials. The modified are length method is used as a solution method. The moment-angle of rotation relationship obtained analytically or experimentally can be easily incorporated into the solution procedure. Several examples tested show that the present method can be used efficiently in analyzing nonlinear frame structures with plastic hinges or local defect.

  • PDF

Analysis of thermo-rheologically complex structures with geometrical nonlinearity

  • Mahmoud, Fatin F.;El-Shafei, Ahmed G.;Attia, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.27-44
    • /
    • 2013
  • A finite element computational procedure for the accurate analysis of quasistatic thermorheological complex structures response is developed. The geometrical nonlinearity, arising from large displacements and rotations (but small strains), is accounted for by the total Lagrangian description of motion. The Schapery's nonlinear single-integral viscoelastic constitutive model is modified for a time-stress-temperature-dependent behavior. The nonlinear thermo-viscoelastic constitutive equations are incrementalized leading to a recursive relationship and thereby the resulting finite element equations necessitate data storage from the previous time step only, and not the entire deformation history. The Newton-Raphson iterative scheme is employed to obtain a converged solution for the non-linear finite element equations. The developed numerical model is verified with the previously published works and a good agreement with them is found. The applicability of the developed model is demonstrated by analyzing two examples with different thermal/mechanical loading histories.

Plastic analysis of steel arches and framed structures with various cross sections

  • Silva, Jessica L.;Deus, Lidiane R.R.M.;Lemes, Igor J.M.;Silveira, Ricardo A.M.
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.257-270
    • /
    • 2021
  • This paper presents a displacement-based numerical methodology following the Euler-Bernoulli theory to simulate the 2 nonlinear behavior of steel structures. It is worth emphasizing the adoption of co-rotational finite element formulations considering large displacements and rotations and an inelastic material behavior. The numerical procedures proposed considers plasticity concentrated at the finite elements nodes, and the simulation of the steel nonlinear behavior is approached via the Strain Compatibility Method (SCM), where the material constitutive relation is used explicitly. The SCM is also applied in determining the sections bearing capacity. Moreover, the present numerical approach is not limited to a specific structural member cross-sectional typology, with the residual stress models introduced explicitly in subareas of steel cross-sections generated by a 2D discretization. Finally, results consistent with the literature and with low processing time are presented.

Magnetic and magneto-optical properties of two metallic phase magnet Co/Co$_2$TiSn films

  • Kim, T. W.;Lee, J. W.;S. C. Shin
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.375-377
    • /
    • 1998
  • The magneto-optical properties of Co/Co$_2$TiSn two-phase magnet films were studied. These films show that relatively large Kerr rotations which are -0.4 deg. at the wavelength of 400 nm, compared to that of pure Co. It is conceivable that the magneto-optical effects may be due to both contributions of ferromagnetic Co matrix and ferromagnetic Co$_2$TiSn Heusler alloy precipitate. The perpendicular magnetization curve domonstrates a typical bubble domain hysteresis loop. the saturation magnetization change of the annealed film is less sensitive to temperature in the low temperature region and the Curie temperature of Co$_2$TiSn Heusler alloy precipitate is a little higher in the annealed film. These can be explained by the increase of the number of Co-Co exchange interaction in Heusler alloy structure resulting from the change of chemical ordering by annealing.

  • PDF

Time varying LQR-based optimal control of geometrically exact Reissner's beam model

  • Suljo Ljukovac;Adnan Ibrahimbegovic;Maida Cohodar-Husic
    • Coupled systems mechanics
    • /
    • 제13권1호
    • /
    • pp.73-93
    • /
    • 2024
  • In this work, we propose combining an advanced optimal control algorithm with a geometrically exact beam model. For simplicity, the 2D Reissner beam model is chosen to represent large displacements and rotations. The difficulty pertains to the nonlinear nature of beam kinematics affecting the tangent stiffness matrix, making it non-constant, which compromises direct use of optimal control methods for linear problems. Thus, we seek to accommodate a time varying control using linear-quadratic regulator (LQR) algorithm with the proposed geometrically nonlinear beam model. We provide a detailed theoretical formulation and its numerical implementation in a variational format form. Several illustrative numerical examples are provided to confirm an excellent performance of the proposed methodology.

무 베어링 로터 시스템의 정지 및 전진 비행시 공력탄성학적 해석 (Aeroelastic Analysis of Bearingless Rotor Systems in Hover and Forward Flight)

  • 임인규;이인
    • 한국항공우주학회지
    • /
    • 제35권6호
    • /
    • pp.503-508
    • /
    • 2007
  • 본 연구에서는 대변형 보이론을 이용하여 무베어링 로터 시스템의 공력탄성학적 안정성 해석을 수행하였다. 무베어링 로터 시스템의 유연보, 토오크 튜브, 그리고 메인 블레이드를 각각 탄성 운동을 하는 보로 가정하고, 1차원 보 요소로 모델링을 하였다. 외력으로는 2차원 준-정상 공기력 모델을 적용하였으며, 보의 유한 요소 지배방정식은 헤밀턴 원리(Hamilton's Principle)를 이용하여 얻었다. 공력탄성학적 안정성 해석을 수행하기 위하여 정지 비행시는 모달 접근법을, 전진 비행시는 주기적인 특성을 갖는 비선형 정적 트림해를 얻기 위해 동체 평형을 고려한 연계 평형 해석을 통한 완전 유한요소 방정식을 이용하였다. 본 연구에서 구한 결과를 기존의 적정변형 보이론에 모달 접근법을 이용한 무베어링 로터 시스템의 결과와 비교하였다.

비선형 폭발해석에 의한 콘크리트 구조물의 손상도 평가 (Nonlinear Explosion Analyses for Damage Assessments of Reinforced Concrete Structures)

  • 허택녕;김성윤
    • 대한토목학회논문집
    • /
    • 제37권1호
    • /
    • pp.1-7
    • /
    • 2017
  • 일반적으로 구조물에 폭발, 충돌, 지진과 바람 등과 같이 짧은 시간에 큰 하중이 작용하게 되면 구조물은 국부적으로 재료의 대변형(large deformation), 대회전(large rotation), 대변형률(large strain)등이 발생하게 된다. 이와 같은 현상을 해석하려면 전산연속체 역학에 기초하여 유체-구조물 상호작용 등을 고려할 수 있는 하이드로코드(Hydrocode)의 도움이 필요하다. 또한, 폭발로 인해 발생되는 순간 동역학적인 폭발 메커니즘은 매우 복잡하기 때문에 폭발실험을 병행하여 거동을 예측하는 것이 합리적인 방법이지만 막대한 비용과 시설이 요구되므로 한계가 있는 것도 사실이다. 따라서 본 논문에서는 하이드로코드인 AUTODYN을 사용하여 폭발해석한 결과를 기수행된 철근콘크리트 슬래브의 폭발실험 결과와 비교하여 폭발해석 방법의 타당성을 검토하였고, 동일한 폭발해석 모형에 대하여 철근 배근간격, 피복두께의 변화 및 수직철근 유무에 따른 폭발 손상도를 비교검토하였다. 검토한 결과, 철근의 배근간격에 대한 철근콘크리트 슬래브 두께의 비가 커질수록, 지름이 큰 철근보다 지름이 작은 철근을 많이 사용할수록, 마지막으로 수직철근을 배근할수록 콘크리트 구조물의 내폭성능이 향상됨을 알 수 있었다.

Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation

  • Chen, Xia-chun;Bai, Zhi-zhou;Zeng, Yu;Jiang, Rui-juan;Au, Francis T.K.
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1045-1067
    • /
    • 2016
  • Concrete bridges with corrugated steel webs and prestressed by both internal and external tendons have emerged as one of the promising bridge forms. In view of the different behaviour of components and the large shear deformation of webs with negligible flexural stiffness, the assumption that plane sections remain plane may no longer be valid, and therefore the classical Euler-Bernoulli and Timoshenko beam models may not be applicable. In the design of this type of bridges, both the ultimate load and ductility should be examined, which requires the estimation of full-range behaviour. An analytical sandwich beam model and its corresponding beam finite element model for geometric and material nonlinear analysis are developed for this type of bridges considering the diaphragm effects. Different rotations are assigned to the flanges and corrugated steel webs to describe the displacements. The model accounts for the interaction between the axial and flexural deformations of the beam, and uses the actual stress-strain curves of materials considering their stress path-dependence. With a nonlinear kinematical theory, complete description of the nonlinear interaction between the external tendons and the beam is obtained. The numerical model proposed is verified by experiments.

Changes in High Degree p-mode Parameters with Magnetic and Flare Activities

  • Maurya, Ram Ajor
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.89.2-89.2
    • /
    • 2013
  • Solar energetic transients, e.g., flares, CMEs, etc., release large amount of energy which is expected to excite acoustic waves (p-modes) by exerting mechanical impulse of the thermal expansion of the flare on the photosphere. We study the p-mode properties of flaring and dormant active regions (ARs) to find association between flare and p-mode parameters. We compute the magnetic and flare activity indices of ARs using the line-of-sight magnetograms and GOES X-ray fluxes, respectively. The p-mode parameters are computed from the ring-diagram analysis. We correct p-mode parameters for magnetic field, filling factors and foreshortening by multiple linear-regression analysis. Our analysis of several flaring and dormant ARs observed during the Carrington rotations 1980-2109, showed strong association of mode parameters with magnetic and flare activities. We find that the mode parameters are contaminated by the geometrical effect. Mode amplitude decreases with angular distance from the solar disc centre. The mode width increases with magnetic activity while amplitude showed opposite relation due to mode absorption by the sunspot. After correcting modes due to all geometrical effects, magnetic activity and filling factor, we find that the modes amplitude, and mode energy increases with flare energy while width shows opposite relation.

  • PDF

p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석 (Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model)

  • 조진구;박진환
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.