• Title/Summary/Keyword: Large Electric Motor

Search Result 131, Processing Time 0.027 seconds

Study of Developing Control Algorithm for Pumped-storage Synchronous Motor Drive

  • Park Shin-Hyun;Park Yo-Jip;Kim Jang-Mok;Baek Kwang-Ryul;Lim Ik-Hun;Ryu Ho-Seon
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.84-89
    • /
    • 2005
  • This paper presents a control algorithm for a large salient-pole synchronous motor fed by a Load Commutated Inverter (LCI). Many papers have been presented in the past few years on the justification, design, and application of variable-speed drive. The focus of this paper is on high torque operation and the estimation of initial rotor position. The results of simulation indicate that it is possible to produce the maximum torque and estimate the initial rotor position.

Characteristics of Dissipation Factor in High Voltage Motor Stator Insulations (고압전동기 고정자 권선 절연재료에서 유전정접 특성)

  • Mo, Il-Soon;Kim, Hee-Dong;Lee, Young-Jun;Ju, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2101-2103
    • /
    • 1999
  • The insulation condition of stator windings was measured by dissipation factor($tan{\delta}$) test in the six high voltage motors(rated 6.6kV) which had been in service for two years. The ${\Delta}tan{\delta}$ of motor D and E was higher than that of the rest motors. The specimens were drawn out from stator windings of the high voltage motor and their were analyzed using scanning electron microscope (SEM). SEM result shows that large voids are present in the interface both turn insulation and groundwall insulation.

  • PDF

A Study on Vibration and Noise through Finite Element Analysis of Large High Speed Press (대형 고속프레스의 유한요소해석을 통한 진동 및 소음에 대한 연구)

  • Seung-Soo Kim;Chul-Jae Jung;Chun-Kyu Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.14-23
    • /
    • 2023
  • The electric vehicle market is developing rapidly around the world. Also, parts of electric vehicles require precision.In order to produce high-precision motor cores,Press equipment must also have good precision. Drive motor cores are an important technology for electric vehicles. It uses a large high-speed press to mass-produce drive motor cores. Because it's a large high-speed press, there are many reasons why the precision is not good. One of the causes is vibration and noise. Recently, as environmental demands have become stricter, regulations on noise and vibration have been strengthened. It is important for press machines to reduce vibration first for sound insulation and dust proofing. This is because the "breakthrough" phenomenon occurs in the press. Dynamic precision is the precision under the load of the press, Design considering strain and stiffness shall be made. Vibration and noise may occur due to SPM of high-speed press,And vibration and noise can cause structural deformation of the press. Structural deformation of the press can affect the precision of the product.Noise and vibration also cause problems for workers and work environments. Problems with vibration and noise occur during press processing, and vibration and noise lead to damage to the mold or defects in the product. Reliability in high-quality technology must be secured with low noise and low vibration during press processing. Modular shape and deformation energy effects were analyzed through finite element analysis. In this study, a study on vibration and noise countermeasures was conducted through finite element analysis of a large high-speed press.

A Study on Starting Characteristic and Improvement for High Power Motor with Tunnel Boring Machine (TBM용 대용량 전동기의 기동 특성 및 개선 관한 연구)

  • Kim, Tae-Kue;An, Joon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Tunnel Boring Machine's Technology has depends mostly on imports, currently domestic technology development was proceeding. There are many technologies in this field, above all, the large-capacity motor drive technology required for excavation is one of the core technologies. In particular, when several large motors are simultaneously starting, there are many problems due to a large starting current at that time, and it is difficult to design and operate a power receiving facility. In this paper, A method of reducing the starting current by using the regenerative power generated by the deceleration of the motor has been studied. To verify this proposal, we designed the induction motor controller using CAE based power simulation tool and verified the results of the proposed method by applying the reduced model. As a result, it is possible to reduce the maximum starting current and shorten the start-up time. Moreover, even if several motors are connected to one bank, it is proved that the method can be efficiently operated by using the sequential braking / starting sequence. In the case of a power system in which a large capacity electric motor such as a tunnel excavation system is driven, the results of this study are expected to be a stable and effective method for solving the start-up current problem and designing the power receiving facility.

Design and Evaluation of a Multi-layer Interior PM Synchronous Motor for High-Speed Drive Applications

  • Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.405-412
    • /
    • 2016
  • In general, surface mounted PM synchronous motors (SPMSMs) are mainly adopted as a driving motor for high-speed applications, because they have high efficiency and high power density. However, the SPMSMs have some weak points such as the increase of magnetic reluctance and additional losses as a consequence of using a non-magnetic sleeve. Especially, the magneto-motive force (MMF) in the air-gap of the SPMSMs is weakened due to the magnetically increased resistance. For that reason, a large amount of PM is consumed to meet the required MMF. Nevertheless, it cannot help using the sleeve in order to maintain the mechanical integrity of a rotor assembly in high-speed rotation. Thus, in this paper, a multi-layer interior PM synchronous motor (IPMSM) not using the sleeve is presented and designed as an alternative of a SPMSM. Both motors are evaluated by test results based on a variety of characteristics required for an air blower system of a fuel cell electric vehicle.

Stiffness effect of the lamination pressing force for laminated rotor (적층된 로터에서 적층판 압착력의 강성 효과)

  • 김영춘;박철현;박희주;문태선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.565-568
    • /
    • 2002
  • A lot of rotating machines are being used in the industrial world and electric motor and generator take the most part of it. When it comes to the electric motor and generator, we can not help thinking about the eddy current because it brings a loss of electric and can be a important reason of the heat generation. To attenuate eddy current. laminated silicon steel sheets are being used in general. Especially, laminated rotor is being used for rotating part of the electric motor and generator and it decreases electrical loss and heat generation but we can be faced with another problem. In general, most of the motor and generator can be normally operated under 3600rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed. large scale and high precision in industrial world. The critical speed can be determined from the inertia and stiffness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape. lamination material and shape. insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method.

  • PDF

Modeling and Simulation with a Variable Speed Drive System of a Electric Motor Using MATLAB/SIMULINK (MATLAB/SIMULINK를 이용한 전동기 가변속 구동시스템 모델링 및 시뮬레이션)

  • 정삼용;최연옥;한엄용;오금곤;정수복;조금배
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.141-147
    • /
    • 1997
  • The variable speed drive system of a electric motor is popular in industry due to its economical aspect and simplicity of implementation, comparing with a steam turbine or the other engine driven. For a large pumping load like a feedwater pump rated about or more than 20,000㎾, a synchronous motor could be primarily considered. In this paper, we studied the modelling of a variable speed drive system consisted with a load commutated inverter(LCI) and a brushless sailent pole rotor synchronous motor(SM) using MATLAB/SIMULINK. Simulation was performed with a small SM motor parameters.

  • PDF

Variable structure control of AC servo motors for high performance (가변 구조 제어를 이용한 AC 서보 모터의 고성능 제어)

  • Kim, Jung-Ho;Eun, Yong-Soon;Cho, Dong-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.351-361
    • /
    • 1996
  • A variable structure controller is developed for an AC servo motor used in CNC milling machines. The designed controller is implemented as an outer loop controller to a factory designed motor-servopack system. The robustness parameter is tuned for a fast response when the speed tracking error is large, while it is tuned for small oscillations when the speed tracking error is small. The designed controller is installed on a CNC machine using a PC. Cutting experiments show improved performance over the factory-designed controller.

  • PDF

A Scheme of EDTC Control using an Induction Motor Three-Level Voltage Source Inverter for Electric Vehicles

  • Zaimeddine, R.;Berkouk, E.M.;Refoufi, L.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.505-512
    • /
    • 2007
  • The object of this paper is to study a new control structure for sensorless induction machines dedicated to electrical drives using a three-level voltage source inverter VSI-NPC. The amplitude and the rotating speed of the flux vector can be controlled freely. The scheme investigated is an Enhanced direct torque control "EDTC" for electric vehicle propulsion. The considered application imposes some constraints which are achieved in EDTC control (fast torque response, optimal switching logic, torque control at zero speed, and large speed control. The results obtained for an induction motor indicate superior performance over the FOC type without need for any mechanical sensor.

An examples of a 6-inch GTO inverter drive system applied for rougher mills

  • Kawasaki, Muneo;Okayama, Hideo;Koyama, Masato;Mitsuhashi, Masamichi;Masuda, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.25-28
    • /
    • 1996
  • Recently, AC variable-speed motors are used for many steel rolling mill drive systems, because of their low maintenance and enhanced control performance. We have been applied GTO inverters for these AC motor drive systems since 1993. We have developed world largest 6-inch diameter GTO and large capacity 3-level GTO inverter up to 20000(kVA). As an example, in this paper, we describe the main circuit, system arrangement and control features of the 6-inches GTO inverters to drive rougher mills for hot strip mill of Pohang Iron & Steel Co., Ltd. The motor capacity is 6000(kW), and it's overload is 250(%).

  • PDF