• Title/Summary/Keyword: Large Eddy simulation

Search Result 519, Processing Time 0.023 seconds

Numerical Analysis of Flow Characteristics of Secondary Currents in Curved Channels (사행수로에서 2차류 거동에 대한 수치해석)

  • Seo, Il-Won;Shin, Jae-Hyun;Kim, Tae-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.558-558
    • /
    • 2012
  • 다수의 자연 하천은 유사 이동과 하안의 침식으로 인하여 사행 하천이 발생한다. 사행 하천에서의 이차류는 원심력, 편수위로 발생하는 중력에 의한 압력차, 그리고 난류로 인하여 발생하는 응력으로 인하여 형성되며 나선형 구조 형태로 표면 유속은 외부로 향하고 하천 바닥의 유속은 안으로 향하게 된다. 이러한 2차류의 형성은 주 흐름의 특성을 변형시킨다. 자연하천에서 2차류는 주 흐름의 15-25%의 크기를 가지고 있으나, 하상의 변화, 유사의 이동 등과 연관되므로 2차류의 영향을 정확히 해석하는 것은 수리학적으로 매우 중요하다. 본 연구에서는 사행수로에서 발생하는 2차류 거동을 수치모의를 통하여 수행하였다. 우선 2차류의 분석을 위하여 실험을 통한 결과물을 비교하였다. 자연 하천의 특성을 반영할 수 있도록 서일원(2006)이 수행한 S-자 형태의 실험 수로의 실험 결과를 분석하였다. 수치 모의를 위하여 3차원 전산유체역학 프로그램을 사용하여 사행수로의 2차원 유속 구조를 모의할 수 있도록 하였다. FLOW-3D 프로그램을 이용하여 실험 결과와 모의 결과를 비교할 수 있도록 하였으며 비교 후 보정을 실시하였다. 모의는 주로 LES (Large Eddy Simulation) 모형을 통해 이루어졌으며, 이를 통하여 실험에서 획득한 결과와 비슷한 유속구조 분포를 확인할 수 있었다. 보정 및 검증 후 수치 모의를 통한 유속 데이터를 이용하여 민감도 분석을 실행하였다. 이후로는 수로의 만곡부, 조도, 수심 등 인공수로의 조건을 변경하여 수치 모의를 수행하였다. 보정된 결과를 이용하여 추가적인 모의를 통한 유속 분포 구조의 비교가 이루어졌다. 이를 통하여 각 조건이 이차류의 크기에 미치는 영향을 확인할 수 있었으며, 모의를 통한 유속분포 결과는 대체적으로 실험을 통한 이차류의 연직분포 구조와 일치하였다.

  • PDF

A Numerical Analysis on Effect of Baffles in a Stirred Vessel (교반탱크에서 베플 형상의 영향에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The flow characteristics in a stirred tank are very useful in a wide variety of industrial applications. Generally, the flow pattern, power consumption and mixing time in stirred vessels depend not only on the design of the impeller, but also on the tanks' geometry and internal structure. In this study, the analysis of an unstable and unsteady complicated flow characteristics generated by the interaction between the baffle shape and impeller were performed using the ANSYS FLUENT LES Turbulence Model. The study compared the predictions of CFD with the interaction between two types of rotating impellers (axial and radial flows) and the shapes of three baffles. The results of the comparison verified that the design model showed a relatively efficient trend in the mixing flow fields and characteristics around the impeller and baffles during agitation.

Non-Reacting Flow Structure of a Low Swirl Combustor with respect to Inlet Velocities (저선회 연소기의 입구 속도에 따른 비반응 유동구조 분석)

  • Jeong, Hwanghui;Lee, Bok Jik;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.56-63
    • /
    • 2018
  • In low swirl combustors the flame is lifted above the nozzle to achieve balance between the flame speed and velocity field at the exit of the nozzle. Characterization of the flame liftoff height is important because it affects the stability of the combustor and degradation of the nozzle material. In experiments, a counter-intuitive trend of flame liftoff heights with respect to inlet velocities was observed. To elucidate the complicated flow field in a low swirl combustor having swirl vanes and a turbulence generator, a series of numerical simulations of non-reacting flows was conducted by varying the inlet velocity. The flow structures at the exit of the nozzle with respect to the inlet velocities are investigated to support the observation in the experiments.

Numerical study on Reynolds number effects on the aerodynamic characteristics of a twin-box girder

  • Laima, Shujin;Wu, Buchen;Jiang, Chao;Chen, Wenli;Li, Hui
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.285-298
    • /
    • 2019
  • For super long-span bridges, the aerodynamic forces induced by the flow passing the box girder should be considered carefully. And the Reynolds number sensitively of aerodynamic characteristics is one of considerable issue. In the study, a numerical study on the Reynolds number sensitivity of aerodynamic characteristic (flow pattern, pressure distribution and aerodynamic forces) of a twin-box girder were carried out using large eddy simulation (LES) with the dynamic Smagorinsky-Lilly subgrid model. The results show that the aerodynamic characteristics have strong correlation with the Reynolds number. At the leading edge, the flow experiences attachment, departure, and reattachment stages accompanying by the laminar transition into turbulence, causing pressure plateaus to form on the surface, and the pressure plateaus gradually shrinks. Around the gap, attributing that the flow experiences stages of laminar cavity flow, the wake with alternate shedding vortices, and turbulent cavity flow in sequence with an increase in the Reynolds number, the pressures around the gap vary greatly with the Reynold number. At the trailing edge, the pressure gradually recovers as the flow transits to turbulence (the flow undergoes wake instability, shear layer transition-reattachment station), In addition, at relative high Reynolds numbers, the drag force almost does not change, however, the lift force coefficient gradually decreases with an increase in Reynolds number.

The importance of corner sharpness in the BARC test case: A numerical study

  • Chiarini, Alessandro;Quadrio, Maurizio
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.43-58
    • /
    • 2022
  • The BARC flow is studied via Direct Numerical Simulation at a relatively low turbulent Reynolds number, with focus on the geometrical representation of the leading-edge (LE) corners. The study contributes to further our understanding of the discrepancies between existing numerical and experimental BARC data. In a first part, rounded LE corners with small curvature radii are considered. Results show that a small amount of rounding does not lead to abrupt changes of the mean fields, but that the effects increase with the curvature radius. The shear layer separates from the rounded LE at a lower angle, which reduces the size of the main recirculating region over the cylinder side. In contrast, the longitudinal size of the recirculating region behind the trailing edge (TE) increases, as the TE shear layer is accelerated. The effect of the curvature radii on the turbulent kinetic energy and on its production, dissipation and transport are addressed. The present results should be contrasted with the recent work of Rocchio et al. (2020), who found via implicit Large-Eddy Simulations at larger Reynolds numbers that even a small curvature radius leads to significant changes of the mean flow. In a second part, the LE corners are fully sharp and the exact analytical solution of the Stokes problem in the neighbourhood of the corners is used to locally restore the solution accuracy degraded by the singularity. Changes in the mean flow reveal that the analytical correction leads to streamlines that better follow the corners. The flow separates from the LE with a lower angle, resulting in a slightly smaller recirculating region. The corner-correction approach is valuable in general, and is expected to help developing high-quality numerical simulations at the high Reynolds numbers typical of the experiments with reasonable meshing requirements.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

Non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers: A case study

  • Hongtao, Shen;Weicheng, Hu;Qingshan, Yang;Fucheng, Yang;Kunpeng, Guo;Tong, Zhou;Guowei, Qian;Qinggen, Xu;Ziting, Yuan
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.419-430
    • /
    • 2022
  • In wind-resistant designs, wind velocity is assumed to be a Gaussian process; however, local complex topography may result in strong non-Gaussian wind features. This study investigates the non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers by the large eddy simulation (LES) model, and the turbulent inlet of LES is generated by the consistent discretizing random flow generation (CDRFG) method. The performance of LES is validated by two different complex terrains in Changsha and Mianyang, China, and the results are compared with wind tunnel tests and onsite measurements, respectively. Furthermore, the non-Gaussian parameters, such as skewness, kurtosis, probability curves, and gust factors, are analyzed in-depth. The results show that the LES method is in good agreement with both mean and turbulent wind fields from wind tunnel tests and onsite measurements. Wind fields in complex terrain mostly exhibit a left-skewed Gaussian process, and it changes from a softening Gaussian process to a hardening Gaussian process as the height increases. A reduction in the gust factors of about 2.0%-15.0% can be found by taking into account the non-Gaussian features, except for a 4.4% increase near the ground in steep terrain. This study can provide a reference for the assessment of extreme wind loads on structures in complex terrain.

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

Aerodynamic Characteristics of Neighboring Building Exposed to Twisted Wind

  • Lei Zhou;KamTim Tse;Gang Hu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.241-263
    • /
    • 2022
  • The conventional wind and twisted-wind effect on aerodynamic properties of neighboring buildings arranged in side-by-side and tandem systems at 2B and 5B spacings are systematically investigated by large eddy simulation. Different physical interactions between different wind profiles and neighboring buildings will be deeply understood. The neighboring-building system under two different types of wind profiles, i.e., conventional wind profile (CWP), twisted wind profiles (TWP) with the maximum twisted angle of 30°, is used to evaluate the variation of physical mechanism between wind and buildings. Aerodynamic characteristics including mean and RMS pressure coefficient, and velocity field were systematically analyzed and compared between different scenario. It was found that the distribution of mean pressure, root-mean-square x velocity and the streamline of wind flow for TWP greatly deviated from CWP, and the effect of TWP on the downstream building, was drastically different from that of CWP, such as the size of vortexes after the lower stream building being bigger when exposed to TWP, and the mean pressure distribution on the building surfaces are also different. Moreover, evidence of buildings arranged in side-by-side and tandem configurations having interchangeable properties under TWP was also discovered, that two buildings being arranged side-by-side exposed to TWP could be identified as being arranged in tandem with a different wind twist angle, or vice versa.

Numerical comparative study on high-fidelity prediction of aerodynamic noise from centrifugal fan system (원심팬 시스템의 공력소음 고신뢰 예측을 위한 수치 비교 연구)

  • Seo-Yoon, Ryu;Minseung, Jung;Younguk, Song;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.713-722
    • /
    • 2022
  • In this paper, the flow performance and aero-acoustic noise generated by the target centrifugal fan system were investigated numerically and experimentally. Also, the numerical method for Computational Aero-Acoustics were evaluated by comparing each method. To analyze the performance of the centrifugal fan experimentally, the acoustic power level was measured in the semi-anechoic chamber using microphones, and the active frequency range for the noise performance was identified and that frequency range was applied for Computational Aero-Acoustics (CAA) techniques as sampling frequency. Then, Navier-Stokes equation and the Ffowcs Williams&Hawking equations were used to analyze the flow and sound power numerically, respectively, and a virtual acoustic radiation plane was designed and used for the implementation of the sound field. The accuracy and numerical characteristics of the numerical methods were validated by comparing simulated acoustic power levels with acoustic power levels measured.