• 제목/요약/키워드: Large Deformation Theory

검색결과 173건 처리시간 0.02초

2차원 절삭 칩 모델에 의한 응력분포 해석에 관한 연구 (A Study on the Analysis of Stress Distribution by Orthogonal Cutting Chip Model)

  • 김정두;이은상;현동훈
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2926-2935
    • /
    • 1993
  • Chip breaker selection analysis, only being possible through experimental process, was obtained by a applied equation which used an orthogonal cutting model and a basic chip deformation. This equation could present an analysis of the chip breaking phenomena without the use of an actual experimetal method, and it was applied to computer simulation and proved the validity of theory through actual experiments. From these results, an efficient method for finding the optimum conditions of chip breaking was found through an optimized theory being applied to basic program. A finite element model for simulating chip breaking in orthogonal cutting was developed and discussed. By simulation the animation of chip breaking is observed in process on the computer screen.

대변형 접촉을 고려한 고무 마찰 예측 연구 (Predictive Study of Rubber Friction Considering Large Deformation Contact)

  • 남승국
    • Tribology and Lubricants
    • /
    • 제34권1호
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents the analysis of friction master curves for a sliding elastomer on rough granite. The hysteresis friction is calculated using an analytical model that considers the energy spent during the local deformation of the rubber due to surface asperities. The adhesion friction is also considered for dry friction prediction. The viscoelastic modulus of the rubber compound and the large-strain effective modulus are obtained from dynamic mechanical analysis (DMA). We accurately demonstrate the large strain of rubber that contacts with road substrate using the GW theory. We found that the rubber block deforms approximately to 40% strain. In addition, the viscoelastic master curve considering nonlinearity (at 40% strain) is derived based on the above finding. As viscoelasticity strongly depends on temperature, it can be assumed that the influence of velocity on friction is connected to the viscoelastic shift factors gained from DMA using the time-temperature superposition. In this study, we apply these shift factors to measure friction on dry granite over a velocity range for various temperatures. The measurements are compared to simulated hysteresis and adhesion friction using the Kluppel friction theory. Although friction results in the low-speed band match well with the simulation results, there are differences in the predicted and experimental results as the velocity increases. Thus, additional research is required for a more precise explanation of the viscoelastic material properties for better prediction of rubber friction characteristics.

Superplastic Deformation in the Low Stress Region

  • Jang, Chun-Hag;Kim, Chang-Hong;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권2호
    • /
    • pp.73-78
    • /
    • 1984
  • Superplastic alloys generally exhibit a three-stage sigmoidal variation of stress (f) with strain rate (s), the stages being named region 1, 2 and 3 according to the increasing order of stress or strain rate. In the recent years, two different types of papers have been published on the plastic deformation of Zn-22% Al eutectoid in region Ⅰ differing in strain-rate sensitivity m (= dln f/dln s). In this paper, the data of the two groups have been analysed by applying Kim and Ree's theory of superplastic deformation. (1) We obtained the parametric values of $X_{gj}/{\alpha}_{gj}\;and\;{\beta)_{gj}$ (g: grain boundary, j = 1,2 indicating flow units) appearing in Kim and Ree's theory [Eq. (2a)]. (2) It was found that the value of $X_{g^2}/{\alpha}_{g^2}$ is small for the group data with small m, i.e., ${\alpha}_{g^2}$, which is proportional to the size of flow unit g2, is large whereas ${\alpha}_{g^2}$ is small for the groups data with large m, i.e., the size of the flow unit g2 is small. In other words, the two types of behavior occur by the size difference in the flow units. (3) From the ${\beta}_{gj}$ value, which is proportional to the relaxation time of flow unit gj, the ${\Delta}H_{gj}^{\neq}$ for the flow process was calculated, and found that ${\Delta}H_{g^2}^{\neq}$ is large for the group data with small m whereas it is small for the group data with large m. (4) The flow-unit growth was studied, but it was concluded that this effect is not so important for differentiating the two groups. (5) The difference in ${\alpha}_{g^2}$ and in the growth rate of flow units is caused by minute impurities, crystal faults, etc., introduced in the sample preparation.

Free vibration analysis of FGM plates using an optimization methodology combining artificial neural networks and third order shear deformation theory

  • Mohamed Janane Allah;Saad Hassouna;Rachid Aitbelale;Abdelaziz Timesli
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.633-643
    • /
    • 2023
  • In this study, the natural frequencies of Functional Graded Materials (FGM) plates are predicted using Artificial Neural Network (ANN). A model based on Third-order Shear Deformation Theory (TSDT) and FEM is used to train the ANN model. Different training methods are tested to simulate input and output dependency. As this is a parametric model, several architectures and optimization algorithms were tested. The proposed model allows us to minimize the CPU time to evaluate candidate material properties for FGM plate material selection and demonstrate their influence on dynamic behavior. Consequently, the time required for the FGM design process (candidate materials for material selection) and the geometric optimization of the FGM structure would remain reasonable. The ANN model can help industries to produce FGM plates with good mechanical properties of the selected materials. I addition, this model can be used to directly predict vibration behavior by testing a large number of FGM plates, representing all possible combinations of metals and ceramics in today's industry, without having to solve any eigenvalue problems.

점탄성 거동을 하는 복합재료 판의 대변위 진동해석 (Nonlinear vibration analysis of viscoelastic laminated plates undergoing large deflection)

  • 김태우;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.546-552
    • /
    • 2000
  • Dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated taking into account the viscoelastic behavior of material properties. Based on von Karman's non-linear deformation theory and Boltzmann's superposition principle, non-linear and hereditary type governing equations are derived. Finite element analysis and the method of multiple scales is applied to examine the effect of large amplitude on the dissipative nature of viscoelastic laminated plates.

  • PDF

바인더 랩의 대변형 계산을 위한 효과적인 반복법 (An Effective Iteration Method for the Large Deformation Calculation of a Binder Wrap)

  • 오형석;금영탁;임장근
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.140-148
    • /
    • 1993
  • When a large automobile sheet metal part is formed in a draw die, the binder wrap is first calculated to predict the initial punch contact location for avoiding wrinkles and severe stretching of its thin blank sheet. Since the boundary of a pseudo blank in calculating a binder wrap by means of a geometrically nonlinear finite element method is unknown in advance, an iteration method is generally used. This paper presents an effective iteration method for correction of the pseudo blank in a binder wrap calculation. For the performance test, two examples are adopted. The calculated results for both examples show the good convergence which wasted solutions are obtained in the second iteration step.

  • PDF

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

Introduction of Prediction Method of Welding Deformation by Using Laminated Beam Modeling Theory and Its Application to Railway Rolling Stock

  • Mun, Hyung-Suk;Jang, Chang-Doo
    • International Journal of Railway
    • /
    • 제2권4호
    • /
    • pp.175-179
    • /
    • 2009
  • The welding deformation and its prediction method at the HAZ (Heat-Affected Zone) are presented in this paper. The inherent strain method is well known as analytical method to predict welding deformation of large scale welded structure. Depend on the size of welding deformation in welding joints, the fatigue life, the stress concentration factor and the manufacturing quality of welded structure are decided. Many welded joints and its manufacturing control techniques are also required to railway rolling stock and its structural parts such as railway carbody and bogie frame. Proposed methods in this paper focus on the two different the inherent strain area at HAZ. This is main idea of proposed method and it makes more reliable result of welding deformation analysis at the HAZ.

  • PDF

A Modified Two-Parameter Solution for Crack-Tip Field in Bending Dominated Specimens

  • Jang Seok-Ki;Zhu Xian Kui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.494-504
    • /
    • 2006
  • It is well known that the two-parameter $J-A_2$ solution can well characterize the crack-tip fields and quantify the crack-tip constraint for different flawed geometries in variety of loading conditions. However, this solution fails to do so for bending dominated specimens or geometries at large deformation because of the influence of significant global bending stress on the crack-tip field. To solve this issue, a modified $J-A_2$ solution is developed in this paper by introducing an additional term to address the global bending influence. Using the $J_2$ flow theory of plasticity and within the small-strain framework detailed finite element analyses are carried out for the single edge notched bend (SENB) specimen with a deep crack in A533B steel at different deformation levels ranging from small-scale Yielding to large-scale Yielding conditions. The numerical results of the crack-tip stress field are then compared with those determined from the $J-A_2$ solution and from the modified $J-A_2$ solution at the same level of applied loading Results indicate that the modified $J-A_2$ solution largely improves the $J-A_2$ solution, and match very well with the numerical results in the region of interest at all deformation levels. Therefore, the proposed solution can effectively describe the crack-tip field and the constraint for bending dominated specimens or geometries.

$\gamma$-TiAl 합금의 고온변형 및 Cavity 형성 연구 (A Study on the High Temperature Deformation and the Cavity Initiation of Gamma TiAl Alloy)

  • 김정한;하태권;장영원;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.172-175
    • /
    • 2001
  • The high temperature deformation behavior of two-phase gamma TiAl alloy has been investigated with the variation of temperature and ${\gamma}/{\alpha}_2$ volume fraction. For this purpose, a series of load relaxation tests and tensile tests have been conducted at temperature ranging from 800 to $1050^{\circ}C$. In the early stage of the deformation as in the load relaxation test experimental flow curves of the fine-grained TiAl alloy are well fitted with the combined curves of two processes (grain matrix deformation and dislocation climb) in the inelastic deformation theory. The evidence of grain boundary sliding has not been observed at this stage. However, when the amount of deformation is large (${\epsilon}{\approx}$ 0.8), flow curves significantly changes its shape indicating that grain boundary sliding also operates at this stage, which has been attributed to the occurrence of dynamic recrystallization during the deformation. With the increase in the volume fraction of ${\alpha}_2$-phase, the flow stress for grain matrix deformation increases since ${\alpha}_2$-Phase is considered as hard phase acting as barrier for dislocation movement. It is considered that cavity initiation is more probable to occur at ${\alpha}_2/{\gamma}$ interface rather than at ${\gamma}/{\gamma}$ interface.

  • PDF