Jong In Kim;Joo Young Lee;Jio Chung;Dae Jin Shin;Dong Hyun Choi;Ki Hong Kim;Ki Jeong Hong;Sunhee Kim;Minhwa Chung
Phonetics and Speech Sciences
/
v.15
no.4
/
pp.109-118
/
2023
Cardiac arrest is a critical medical emergency where immediate response is essential for patient survival. This is especially true for Out-of-Hospital Cardiac Arrest (OHCA), for which the actions of emergency medical services in the early stages significantly impact outcomes. However, in Korea, a challenge arises due to a shortage of dispatcher who handle a large volume of emergency calls. In such situations, the implementation of a machine learning-based OHCA detection program can assist responders and improve patient survival rates. In this study, we address this challenge by developing a machine learning-based OHCA detection program. This program analyzes transcripts of conversations between responders and callers to identify instances of cardiac arrest. The proposed model includes an automatic transcription module for these conversations, a text-based cardiac arrest detection model, and the necessary server and client components for program deployment. Importantly, The experimental results demonstrate the model's effectiveness, achieving a performance score of 79.49% based on the F1 metric and reducing the time needed for cardiac arrest detection by 15 seconds compared to dispatcher. Despite working with a limited dataset, this research highlights the potential of a cardiac arrest detection program as a valuable tool for responders, ultimately enhancing cardiac arrest survival rates.
The national economic policy paradigm is constantly changing according to the global business environment. Among them, fostering SMEs is a core policy of many developed countries. The growth of SMEs contributes to the creation of jobs and the development of local communities in the era of employment-free growth. In particular, the growth of SMEs is the foundation for growth into mid-sized and large enterprises. Therefore, the growth of SMEs plays an important role in the national economy. Information and communication technology (ICT) became important much more with the emergence of the 4th industrial revolution. Among them, the growth of ICT SMEs is the nation's future asset. Therefore, this study examines and verifies the main factors affecting the performance of ICT SMEs from the view of their R&D resources. On the basis of 1,999 SMEs dataset, empirical analysis was performed to investigate the influence of R&D resources on their corporate performance. Its results are as follows. First, based on theresource-based theory, ICT SMEs' R&D investment, R&D manpower, and government support policies were found to have a positive effect on securing a company's competitive advantage. Second, it was found that the level of product has a positive effect on the company's performance. Finally, it was found that M&A and technology acquisition method strategies differ according to the growth stage of the company. Therefore, in order to achieve technological innovation and corporate performance of ICT SMEs, the government support policy and investment into internal R&D personnel play as main factors. In addition, it was found that technology acquisition strategies differ depending on the growth stage of the company.
Journal of the Korean Institute of Landscape Architecture
/
v.52
no.2
/
pp.39-50
/
2024
Color is an essential visual element that has a significant impact on the formation of a city's image and people's perceptions. Quantitative analysis of color in urban environments is a complex process that has been difficult to implement in the past. However, with recent rapid advances in Machine Learning, it has become possible to analyze city colors using photos shared by tourists. This study selected Dali City, a popular tourist destination in China, as a case study. Photos of Dali City shared by tourists were collected, and a method to measure large-scale city colors was explored by combining machine learning techniques. Specifically, the DeepLabv3+ model was first applied to perform a semantic segmentation of tourist sharing photos based on the ADE20k dataset, thereby separating artificial elements in the photos. Next, the K-means clustering algorithm was used to extract colors from the artificial elements in Dali City, and an adjacency matrix was constructed to analyze the correlations between the dominant colors. The research results indicate that the main color of the artificial elements in Dali City has the highest percentage of orange-grey. Furthermore, gray tones are often used in combination with other colors. The results indicated that local ethnic and Buddhist cultures influence the color characteristics of artificial elements in Dali City. This research provides a new method of color analysis, and the results not only help Dali City to shape an urban color image that meets the expectations of tourists but also provide reference materials for future urban color planning in Dali City.
Text indicators are increasingly valuable in economic forecasting, but are often hindered by noise and high dimensionality. This study aims to explore post-processing techniques, specifically noise filtering and dimensionality reduction, to normalize text indicators and enhance their utility through empirical analysis. Predictive target variables for the empirical analysis include monthly leading index cyclical variations, BSI (business survey index) All industry sales performance, BSI All industry sales outlook, as well as quarterly real GDP SA (seasonally adjusted) growth rate and real GDP YoY (year-on-year) growth rate. This study explores the Hodrick and Prescott filter, which is widely used in econometrics for noise filtering, and employs sufficient dimension reduction, a nonparametric dimensionality reduction methodology, in conjunction with unstructured text data. The analysis results reveal that noise filtering of text indicators significantly improves predictive accuracy for both monthly and quarterly variables, particularly when the dataset is large. Moreover, this study demonstrated that applying dimensionality reduction further enhances predictive performance. These findings imply that post-processing techniques, such as noise filtering and dimensionality reduction, are crucial for enhancing the utility of text indicators and can contribute to improving the accuracy of economic forecasts.
The Journal of the Convergence on Culture Technology
/
v.10
no.2
/
pp.493-498
/
2024
With the rapid advancement of generative artificial intelligence technology, there is growing interest in how to utilize it in practical applications. Additionally, the importance of prompt engineering to generate results that meet user demands is being newly highlighted. Exploring the new possibilities of generative AI can hold significant value. This study aims to utilize ChatGPT 4.0, a leading generative AI, to propose an effective method for evaluating user experience through the analysis of online customer review data. The user experience evaluation method was based on the six-layer elements of user experience: 'functionality', 'reliability', 'usability', 'convenience', 'emotion', and 'significance'. For this study, a literature review was conducted to enhance the understanding of prompt engineering and to grasp the clear concept of the user experience hierarchy. Based on this, prompts were crafted, and experiments for the user experience evaluation method were carried out using the analysis of collected online customer review data. In this study, we reveal that when provided with accurate definitions and descriptions of the classification processes for user experience factors, ChatGPT demonstrated excellent performance in evaluating user experience. However, it was also found that due to time constraints, there were limitations in analyzing large volumes of data. By introducing and proposing a method to utilize ChatGPT 4.0 for user experience evaluation, we expect to contribute to the advancement of the UX field.
Seul-Gi Oh;Suin Lee;Ba Ool Seong;Chang Seok Ko;Sa-Hong Min;Chung Sik Gong;Beom Su Kim;Moon-Won Yoo;Jeong Hwan Yook;In-Seob Lee
Journal of Gastric Cancer
/
v.24
no.3
/
pp.341-352
/
2024
Purpose: Textbook outcome is a comprehensive measure used to assess surgical quality and is increasingly being recognized as a valuable evaluation tool. Delta-shaped anastomosis (DA), an intracorporeal gastroduodenostomy, is a viable option for minimally invasive distal gastrectomy in patients with gastric cancer. This study aims to evaluate the surgical outcomes and calculate the textbook outcome of DA. Materials and Methods: In this retrospective study, the records of 4,902 patients who underwent minimally invasive distal gastrectomy for DA between 2009 and 2020 were reviewed. The data were categorized into three phases to analyze the trends over time. Surgical outcomes, including the operation time, length of post-operative hospital stay, and complication rates, were assessed, and the textbook outcome was calculated. Results: Among 4,505 patients, the textbook outcome is achieved in 3,736 (82.9%). Post-operative complications affect the textbook outcome the most significantly (91.9%). The highest textbook outcome is achieved in phase 2 (85.0%), which surpasses the rates of in phase 1 (81.7%) and phase 3 (82.3%). The post-operative complication rate within 30 d after surgery is 8.7%, and the rate of major complications exceeding the Clavien-Dindo classification grade 3 is 2.4%. Conclusions: Based on the outcomes of a large dataset, DA can be considered safe and feasible for gastric cancer.
Purpose: Few studies have reported the prevalence of inflammatory bowel disease unclassified (IBDU) among Korean pediatric IBD (PIBD) population. To address this gap, we used two tertiary centers and nationwide population-based healthcare administrative data to estimate the prevalence of Korean pediatric IBDU at the time of diagnosis. Methods: We identified 136 patients aged 2-17 years with newly diagnosed IBD (94 Crohn's disease [CD] and 42 ulcerative colitis [UC]) from two tertiary centers in Korea between 2005 and 2017. We reclassified these 136 patients using the revised Porto criteria. To estimate the population-based prevalence, we analyzed Korean administrative healthcare data between 2005 and 2016, which revealed 3,650 IBD patients, including 2,538 CD and 1,112 UC. By extrapolating the reclassified results to a population-based dataset, we estimated the prevalence of PIBD subtypes. Results: Among the 94 CD, the original diagnosis remained unchanged in 93 (98.9%), while the diagnosis of one (1.1%) patient was changed to IBDU. Among the 42 UC, the original diagnosis remained unchanged in 13 (31.0%), while the diagnoses in 11 (26.2%), 17 (40.5%), and one (2.4%) patient changed to atypical UC, IBDU, and CD, respectively. The estimated prevalences of CD, UC, atypical UC, and IBDU in the Korean population were 69.5%, 9.4%, 8.0%, and 13.1%, respectively. Conclusion: This study is the first in Korea to estimate the prevalence of pediatric IBDU. This prevalence (13.1%) aligns with findings from Western studies. Large-scale prospective multicenter studies on PIBDU are required to examine the clinical features and outcomes of this condition.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.34
no.3
/
pp.202-213
/
2024
Introduction: Acknowledging the global issue of diseases potentially caused by overwork, this study aims to develop an AI model to help workers understand the connection between cerebrocardiovascular diseases and their work environment. Materials and methods: The model was trained using medical and legal expertise along with data from the 2021 occupational disease adjudication certificate by the Industrial Accident Compensation Insurance and Prevention Service. The Polyglot-ko-5.8B model, which is effective for processing Korean, was utilized. Model performance was evaluated through accuracy, precision, sensitivity, and F1-score metrics. Results: The model trained on a comprehensive dataset, including expert knowledge and actual case data, outperformed the others with respective accuracy, precision, sensitivity, and F1-scores of 0.91, 0.89, 0.84, and 0.87. However, it still had limitations in responding to certain scenarios. Discussion: The comprehensive model proved most effective in diagnosing work-related cerebrocardiovascular diseases, highlighting the significance of integrating actual case data in AI model development. Despite its efficacy, the model showed limitations in handling diverse cases and offering health management solutions. Conclusion: The study succeeded in creating an AI model to discern the link between work factors and cerebrocardiovascular diseases, showcasing the highest efficacy with the comprehensively trained model. Future enhancements towards a template-based approach and the development of a user-friendly chatbot webUI for workers are recommended to address the model's current limitations.
Predicting ground settlement during the improvement of soft ground and the construction of a structure is an crucial factor. Numerous studies have been conducted, and many prediction equations have been proposed to estimate settlement. Settlement can be calculated using the compression index of clay. In this study, data on water content, void ratio, liquid limit, plastic limit, and compression index from the Busan New Port area were collected to construct a dataset. Correlation analysis was conducted among the collected data. Machine learning algorithms, including Random Forest, Neural Network, Linear Regression, Ada Boost, and Gradient Boosting, were applied using the Orange mining program to propose compression index prediction models. The models' results were evaluated by comparing RMSE and MAPE values, which indicate error rates, and R2 values, which signify the models' significance. As a result, water content showed the highest correlation, while the plastic limit showed a somewhat lower correlation than other characteristics. Among the compared models, the AdaBoost model demonstrated the best performance. As a result of comparing each model, the AdaBoost model had the lowest error rate and a large coefficient of determination.
This study proposes a novel recommender system using the structural hole analysis to reflect qualitative and emotional information in recommendation process. Although collaborative filtering (CF) is known as the most popular recommendation algorithm, it has some limitations including scalability and sparsity problems. The scalability problem arises when the volume of users and items become quite large. It means that CF cannot scale up due to large computation time for finding neighbors from the user-item matrix as the number of users and items increases in real-world e-commerce sites. Sparsity is a common problem of most recommender systems due to the fact that users generally evaluate only a small portion of the whole items. In addition, the cold-start problem is the special case of the sparsity problem when users or items newly added to the system with no ratings at all. When the user's preference evaluation data is sparse, two users or items are unlikely to have common ratings, and finally, CF will predict ratings using a very limited number of similar users. Moreover, it may produces biased recommendations because similarity weights may be estimated using only a small portion of rating data. In this study, we suggest a novel limitation of the conventional CF. The limitation is that CF does not consider qualitative and emotional information about users in the recommendation process because it only utilizes user's preference scores of the user-item matrix. To address this novel limitation, this study proposes cluster-indexing CF model with the structural hole analysis for recommendations. In general, the structural hole means a location which connects two separate actors without any redundant connections in the network. The actor who occupies the structural hole can easily access to non-redundant, various and fresh information. Therefore, the actor who occupies the structural hole may be a important person in the focal network and he or she may be the representative person in the focal subgroup in the network. Thus, his or her characteristics may represent the general characteristics of the users in the focal subgroup. In this sense, we can distinguish friends and strangers of the focal user utilizing the structural hole analysis. This study uses the structural hole analysis to select structural holes in subgroups as an initial seeds for a cluster analysis. First, we gather data about users' preference ratings for items and their social network information. For gathering research data, we develop a data collection system. Then, we perform structural hole analysis and find structural holes of social network. Next, we use these structural holes as cluster centroids for the clustering algorithm. Finally, this study makes recommendations using CF within user's cluster, and compare the recommendation performances of comparative models. For implementing experiments of the proposed model, we composite the experimental results from two experiments. The first experiment is the structural hole analysis. For the first one, this study employs a software package for the analysis of social network data - UCINET version 6. The second one is for performing modified clustering, and CF using the result of the cluster analysis. We develop an experimental system using VBA (Visual Basic for Application) of Microsoft Excel 2007 for the second one. This study designs to analyzing clustering based on a novel similarity measure - Pearson correlation between user preference rating vectors for the modified clustering experiment. In addition, this study uses 'all-but-one' approach for the CF experiment. In order to validate the effectiveness of our proposed model, we apply three comparative types of CF models to the same dataset. The experimental results show that the proposed model outperforms the other comparative models. In especial, the proposed model significantly performs better than two comparative modes with the cluster analysis from the statistical significance test. However, the difference between the proposed model and the naive model does not have statistical significance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.