다변량 빈도해석과 지역빈도해석의 장점을 동시에 가지는 다변량 지역빈도해석은 다양한 변수를 고려함으로써 수문 현상에 대하여 많은 정보를 얻을 수 있고 많은 가용 자료 수로 인하여 높은 정확도의 분석결과를 도출할 수 있다. 현재까지는 우리나라의 강우 자료를 이용하여 다변량 지역빈도해석이 시도된 적이 없어 국내의 강우 자료를 대상으로 다변량 지역빈도해석의 적용성을 검토할 필요가 있다. 본 연구에서는 다변량 지역빈도해석의 매개변수 추정, 최적 분포형 선정, 확률수문량 성장곡선 추정 등에 집중하여 이변량 수문자료인 연 최대 강우량-지속기간 자료에 대하여 이변량 지역빈도해석의 적용성을 평가하였다. 기상청 71개 지점에 대하여 분석을 실시하였다. 본 연구를 통해 적용된 지역강우자료의 최적 copula 모형으로는 Frank와 Gumbel copula 모형이 선택되었고 주변분포형에 대해서는 지역별로 Gumbel과 대수정규분포와 같은 다양한 분포형이 최적 분포형으로 선택되었다. 상대제곱근오차(relative root mean square error)를 기준으로 지역빈도해석이 지점빈도해석보다 안정적이고 정확한 확률수문량 곡선 추정을 하였다. 이변량 강우분석에서 지역빈도해석을 적용하면 안정적인 수공구조물 설계기준 제시와 강우-지속기간 관계를 모형화 할 수 있을 것으로 기대된다.
스마트폰과 Online Social Network Service(OSNS)의 대중화를 통해 언제 어디서든 주변인뿐만 아니라 전 세계 사람들과 상호작용 할 수 있게 되었고, 그 결과 사람들의 OSNS 사용률은 계속 증가하고 있다. 그런데, 일부 OSNS를 통한 대인관계 형성에 집중하는 사람들의 경우, 수많은 Face-to-Face Interaction(F2F Interaction)을 통해 형성되는 인간관계의 과정을 "친구추천" 버튼 하나로 건너뜀으로써 대인관계 기술 발달 및 유지에 어려움을 겪을 수 있다. 본 논문에서는 오프라인에서 F2F Interaction 기회를 발견 및 제공할 수 있는 상황정보 기반의 친구추천 기법을 제시한다. 이를 위해 스마트폰 센서로부터 사용자의 상황정보와 Facebook에서 형성된 사용자 친구관계 정보를 수집하여 텐서 분해 및 결합을 기반으로 오프라인 환경에서 친구를 추천한다. 성능 평가를 위해 12명의 실험 참가자로부터 상황정보를 수집하고, 만족도를 평가하였다.
해색 원격탐사 자료의 처리과정에서는 일반적으로 관측 영역의 확보를 위해 시공간적 합성을 수행하며, 이 때 Level-2 flag를 참조하여 합성 재료가 되는 영상의 유효성을 판단한다. NASA OBPG의 표준 알고리즘은 stray light에 의한 관측 오차를 최소화하기 위해서 필터링 윈도우를 채택하고 있으나, 이로 인한 관측 영역의 손실이 많다. 이 연구는 유효 관측 영역의 복원/확장을 통한 해색 원격탐사 자료의 품질 향상에 목적을 둔다. 이를 위해서 MODIS/Aqua의 필터링 윈도우의 크기 변화에 따른 관측 영역과 클로로필a 농도 측정값의 변화를 분석하였다. 그 결과 유효 관측 영역에 있어 Level-2 swath 자료, Level-3 일별 합성자료, 8일 합성자료, 월별 합성자료에서 각각 $13.2({\pm}5.2)%$, $30.8({\pm}16.3)%$, $15.8({\pm}9.2)%$, $6.0({\pm}5.6)%$의 복원 효과가 발생하였으며, 표준 자료와의 측정값 차이는 공통 관측 영역에서 평균 0.012% 이하로 매우 유의하였다. 또한 공간 영역 확장으로 인해 시계열 자료에서의 관측 밀도도 상승하였으며 그 이득은 8일 합성자료에서 가장 크게 나타났다. 제안 방법을 통한 유효 영역의 확장은 자료 생산의 효율성뿐만 아니라 자료 분석의 통계적 신뢰성 확보의 측면에서도 해색 원격탐사 자료의 품질 향상에 기여할 수 있다.
Purpose - As the US-China trade war intensifies and lasts long time, there is growing concern about its potential effects on the global economy. In particular, for the countries like Korea that have a large economic dependence on the economy of the two countries, the US-China trade war may have a great repercussion in many ways. The aim of this paper is to investigate the global productivity and market structure implications of the US-China trade war for Korea, as well as for other surrounding countries and regions. Design/methodology - In this paper, we develop a full multi-country/region multi-sector computable general equilibrium (CGE) model of global trade incorporating heterogeneous workers and firms in individual skill levels and used technologies. We then calibrate the model using a global Social Accounting Matrix (SAM) dataset extracted from the recently released GTAP 10 Database, and assess the potential effects of the US-China trade war on the aggregate real productivity and the market structure for Korea, as well as for other surrounding countries and regions. Findings - We show that the US-China trade war may largely affect the aggregate productivity in each sector in each country/region, as well as the global market structure through entry and exit of firms, which results finally in considerable changes in the industrial comparative advantage of each country/region. Though the effects are diverse sector by sector, the results show that Korea may also be affected significantly: concerning the real productivity implications, it is shown that the machinery industry may be affected the most negatively; on the other hand, it is shown that the number of exporting firms may decrease the most in the other transports industry. Originality/value - As the US-China trade war intensifies, many studies have tried to estimate the possible implications, and for this usually the CGE models have largely been used as the standard tool for evaluating the impacts of changes in trade policies. Standard CGE models, however, cannot be used to assess the global productivity and market structure implications due to the symmetric and simplified base assumptions. This paper is the first to analyze and quantify the possible impacts of the US-China trade war on the aggregate productivity and global market structure using a CGE model incorporating endogenous skill-technology assignment of heterogeneous workers and firms.
악성코드를 포함한 모든 응용프로그램은 실행 시 API(Application Programming Interface)를 호출한다. 최근에는 이러한 특성을 활용하여 API Call 정보를 기반으로 악성코드를 탐지하고 분류하는 접근방법이 많은 관심을 받고 있다. 그러나 API Call 정보를 포함하는 데이터세트는 그 양이 방대하여 많은 계산 비용과 처리시간이 필요하다. 또한, 악성코드 분류에 큰 영향을 미치지 않는 정보들이 학습모델의 분류 정확도에 영향을 미칠 수도 있다. 이에 본 논문에서는 다양한 특성 선택(feature selection) 방법을 적용하여 API Call 정보에 대한 차원을 축소시킨 후, 핵심 특성 집합을 추출하는 방안을 제시한다. 실험은 최근 발표된 안드로이드 악성코드 데이터세트인 CICAndMal2020을 이용하였다. 다양한 특성 선택 방법으로 핵심 특성 집합을 추출한 후 CNN(Convolutional Neural Network)을 이용하여 안드로이드 악성코드 분류를 시도하고 결과를 분석하였다. 그 결과 특성 선택 알고리즘에 따라 선택되는 특성 집합이나 가중치 우선순위가 달라짐을 확인하였다. 그리고 이진분류의 경우 특성 집합을 전체 크기의 15% 크기로 줄이더라도 97% 수준의 정확도로 악성코드를 분류하였다. 다중분류의 경우에는 최대 8% 이하의 크기로 특성 집합을 줄이면서도 평균 83%의 정확도를 달성하였다.
분산 딥러닝은 각 노드에서 지역적으로 업데이트한 지역 파라미터를 동기화는 과정이 요구된다. 본 연구에서는 분산 딥러닝의 효과적인 파라미터 동기화 과정을 위해, 레이어 별 특성을 고려한 allreduce 통신과 연산 오버래핑(overlapping) 기법을 제안한다. 상위 레이어의 파라미터 동기화는 하위 레이어의 다음 전파과정 이전까지 통신/계산(학습) 시간을 오버랩하여 진행할 수 있다. 또한 이미지 분류를 위한 일반적인 딥러닝 모델의 상위 레이어는 convolution 레이어, 하위 레이어는 fully-connected 레이어로 구성되어 있다. Convolution 레이어는 fully-connected 레이어 대비적은 수의 파라미터를 가지고 있고 상위에 레이어가 위치하므로 네트워크 오버랩 허용시간이 짧고, 이를 고려하여 네트워크 지연시간을 단축할 수 있는 butterfly all-reduce를 사용하는 것이 효과적이다. 반면 오버랩 허용시간이 보다 긴 경우, 네트워크 대역폭을 고려한 ring all-reduce를 사용한다. 본 논문의 제안 방법의 효과를 검증하기 위해 제안 방법을 PyTorch 플랫폼에 적용하여 이를 기반으로 실험 환경을 구성하여 배치크기에 대한 성능 평가를 진행하였다. 실험을 통해 제안 기법의 학습시간은 기존 PyTorch 방식 대비 최고 33% 단축된 모습을 확인하였다.
문서 자동 요약은 주어진 문서로부터 주요 내용을 추출하거나 생성하는 방식으로 축약하는 작업을 말한다. 최근 연구에서는 대량의 문서를 딥러닝 기법을 적용하여 요약문 자체를 생성하는 방식으로 발전하고 있다. 생성 요약은 미리 생성된 위드 임베딩 정보를 사용하는데, 전문 용어와 같이 저빈도 핵심 어휘는 입베딩 된 사전에 없는 문제가 발생한다. 인코딩-디코딩 신경망 모델의 문서 자동 요약에서 미등록 어휘의 출현은 요약 성능 저하의 요인이다. 이를 해결하기 위해 본 논문에서는 요약 대상 문서에서 새로 출현한 단어를 복사하여 요약문을 생성하는 방법을 사용한다. 기존의 연구와는 달리 정확한 포인팅 정보와 선택적 복사 지시 정보를 명시적으로 제공하는 방법으로 제안하였다. 학습 데이터는 논문의 초록과 제목을 대상 문서와 정답 요약으로 사용하였다. 제안한 인코딩-디코딩 기반 모델을 통해서 자동 생성 요약을 수행한 결과 단어 제현 기반의 ROUGE-1이 47.01로 나타났으며, 또한 어순 기반의 ROUGE-L이 29.55로 향상되었다.
본 논문은 다수의 오토인코더 모델들을 이용한 잡음에 강인한 이미지 분류 시스템을 제안한다. 딥러닝 기술의 발달로 이미지 분류의 정확도는 점점 높아지고 있다. 하지만 입력 이미지가 잡음에 의해서 오염된 경우에는 이미지 분류 성능이 급격히 저하된다. 이미지에 첨가되는 잡음은 이미지의 생성 및 전송 과정에서 필연적으로 발생할 수밖에 없다. 따라서 실제 환경에서 이미지 분류기가 사용되기 위해서는 잡음에 대한 처리 및 대응이 반드시 필요하다. 한편 오토인코더는 입력값과 출력값이 유사하도록 학습되어지는 인공신경망 모델이다. 입력데이터가 학습데이터와 유사하다면 오토인코더의 출력데이터와 입력데이터 사이의 오차는 작을 것이다. 하지만 입력 데이터가 학습데이터와 유사성이 없다면 오토인코더의 출력데이터와 입력데이터 사이의 오차는 클 것이다. 제안하는 시스템은 오토인코더의 입력데이터와 출력데이터 사이의 관계를 이용한다. 제안하는 시스템의 이미지 분류 절차는 2단계로 구성된다. 1단계에서 분류 가능성이 가장 높은 클래스 2개를 선정하고 이들 클래스의 분류 가능성이 서로 유사하면 2단계에서 추가적인 분류 절차를 거친다. 제안하는 시스템의 성능 분석을 위해 가우시안 잡음으로 오염된 MNIST 데이터셋을 대상으로 분류 정확도를 실험하였다. 실험 결과 잡음 환경에서 제안하는 시스템이 CNN(Convolutional Neural Network) 기반의 분류 기법에 비해 높은 정확도를 나타냄을 확인하였다.
합성곱 신경망 모형에서 높은 정확도를 얻기 위해서는 최적의 하이퍼파라미터를 설정하는 작업이 필요하다. 하지만 높은 성능을 낼 수 있는 하이퍼파라미터 값이 정확히 알려진 바가 없으며, 자료마다 최적의 하이퍼파라미터 값이 달라질 수 있기 때문에 매번 실험을 통해서 찾아야만 한다. 또한, 하이퍼파라미터 값들의 범위가 넓고 조합 수가 많기 때문에 시간과 계산량을 줄이기 위해서는 최적값을 찾기 위한 실험 계획을 먼저 한 후에 탐색을 하는 것이 필요하다. 그러나 아직까지 합성곱 신경망 모형에서 하이퍼파라미터 최적화를 위하여 실험계획법을 이용한 연구 결과가 보고되지 않았다. 본 논문에서는 이미지 분류 문제에서 통계방법 중 하나인 실험계획법의 요인배치법을 이용하여 실험 계획을 하고 합성곱 신경망 분석을 한 후에, 높은 성능을 갖는 값을 중심으로 그리드 탐색을 하여 최적의 하이퍼파라미터를 찾는 방법을 제안한다. 실험 계획을 통하여 각 하이퍼파라미터들의 탐색 범위를 줄인 후에 그리드 탐색을 함으로써 효율적으로 연산량을 줄이고 정확도를 높힐 수 있음을 보였다. 또한 실험 결과에서 모형 성능에 가장 큰 영향을 주는 하이퍼파라미터가 학습률이라는 것을 확인할 수 있었다.
국립수산과학원(NIFS)의 정선 관측은 높은 시공간 해상도를 가지며 장기간 동안 같은 정점에서 관측을 수행해오고 있어, 전 세계적으로 유례를 찾아볼 수 없을 만큼 귀중한 자료를 생산하고 있으나, 자료의 신뢰성 문제로 해양 기후 변화 연구에 실제적으로 활용되는 경우가 드물었다. 본 연구에서는 동해 심층 물성이 갖는 작은 자연적 변동성의 특성을 활용함으로써 반세기 이상 축적된 정선 관측 자료에서 나타나는 오차를 정량적으로 평가하여, 해양의 장기 변동성 연구에 기여하는 것을 목적으로 한다. 1℃ 등수온면에서 산출한 NIFS 염분 표준 오차는 평균적으로 1961~1980년 자료의 경우 약 0.160 g/kg, 1981년~1994년은 약 0.060 g/kg, 1995~2002년에는 약 0.020 g/kg, 2003년~2014년이 약 0.010 g/kg으로 시기에 따라 크게 달라져온 것으로 분석되었다. 특히 2011년~2014년 사이에 비정상적으로 오차가 증가된 해가 있었으며, 이것은 센서 관리의 미흡으로 염분 편향이 발생하였기 때문으로 파악되었다. 반면, 2012년도에는 안정적인 관측이 수행되어 거의 0.001 g/kg 의 오차를 갖는 매우 정확한 염분 자료가 얻어졌음이 확인되었다. 이 결과를 통해 품질 관리 과정의 체계화와 센서 관리 전문화 시스템을 확충한다면 국립수산과학원 정선 관측이 기후 변화로 인한 해양 변동성 연구에 크게 기여할 수 있을 만큼 충분히 고품질의 자료를 생산할 수 있을 것으로 기대한다. 마지막으로 현 정선 관측의 개선 방향에 대해 몇 가지 제언을 첨부하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.