DOI QR코드

DOI QR Code

Bivariate regional frequency analysis of extreme rainfalls in Korea

이변량 지역빈도해석을 이용한 우리나라 극한 강우 분석

  • Shin, Ju-Young (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Jeong, Changsam (Department of Civil and Environmental Engineering, Induk University) ;
  • Ahn, Hyunjun (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Heo, Jun-Haeng (Department of Civil and Environmental Engineering, Yonsei University)
  • 신주영 (연세대학교 토목환경공학과) ;
  • 정창삼 (인덕대학교 토목환경공학과) ;
  • 안현준 (연세대학교 토목환경공학과) ;
  • 허준행 (연세대학교 토목환경공학과)
  • Received : 2018.06.10
  • Accepted : 2018.07.16
  • Published : 2018.09.30

Abstract

Multivariate regional frequency analysis has advantages of regional and multivariate framework as adopting a large number of regional dataset and modeling phenomena that cannot be considered in the univariate frequency analysis. To the best of our knowledge, the multivariate regional frequency analysis has not been employed for hydrological variables in South Korea. Applicability of the multivariate regional frequency analysis should be investigated for the hydrological variable in South Korea in order to improve our capacity to model the hydrological variables. The current study focused on estimating parameters of regional copula and regional marginal models, selecting the most appropriate distribution models, and estimating regional multivariate growth curve in the multivariate regional frequency analysis. Annual maximum rainfall and duration data observed at 71 stations were used for the analysis. The results of the current study indicate that Frank and Gumbel copula models were selected as the most appropriate regional copula models for the employed regions. Several distributions, e.g. Gumbel and log-normal, were the representative regional marginal models. Based on relative root mean square error of the quantile growth curves, the multivariate regional frequency analysis provided more stable and accurate quantiles than the multivariate at-site frequency analysis, especially for long return periods. Application of regional frequency analysis in bivariate rainfall-duration analysis can provide more stable quantile estimation for hydraulic infrastructure design criteria and accurate modelling of rainfall-duration relationship.

다변량 빈도해석과 지역빈도해석의 장점을 동시에 가지는 다변량 지역빈도해석은 다양한 변수를 고려함으로써 수문 현상에 대하여 많은 정보를 얻을 수 있고 많은 가용 자료 수로 인하여 높은 정확도의 분석결과를 도출할 수 있다. 현재까지는 우리나라의 강우 자료를 이용하여 다변량 지역빈도해석이 시도된 적이 없어 국내의 강우 자료를 대상으로 다변량 지역빈도해석의 적용성을 검토할 필요가 있다. 본 연구에서는 다변량 지역빈도해석의 매개변수 추정, 최적 분포형 선정, 확률수문량 성장곡선 추정 등에 집중하여 이변량 수문자료인 연 최대 강우량-지속기간 자료에 대하여 이변량 지역빈도해석의 적용성을 평가하였다. 기상청 71개 지점에 대하여 분석을 실시하였다. 본 연구를 통해 적용된 지역강우자료의 최적 copula 모형으로는 Frank와 Gumbel copula 모형이 선택되었고 주변분포형에 대해서는 지역별로 Gumbel과 대수정규분포와 같은 다양한 분포형이 최적 분포형으로 선택되었다. 상대제곱근오차(relative root mean square error)를 기준으로 지역빈도해석이 지점빈도해석보다 안정적이고 정확한 확률수문량 곡선 추정을 하였다. 이변량 강우분석에서 지역빈도해석을 적용하면 안정적인 수공구조물 설계기준 제시와 강우-지속기간 관계를 모형화 할 수 있을 것으로 기대된다.

Keywords

References

  1. Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., Mirabbasi, R., and Ouarda, T .B. M. J. (2017). "Multivariate regional frequency analysis: Two new methods to increase the accuracy of measures." Advances in Water Resources, Vol. 107, pp. 290-300. https://doi.org/10.1016/j.advwatres.2017.07.006
  2. Bellman, R., Corporation, R., and Collection, K. M. R. (1957). Dynamic programming. Princeton University Press.
  3. Ben Aissia, M. A., Chebana, F., Ouarda, T .B. M. J., Bruneau, P., and Barbet, M. (2015). "Bivariate index-flood model: case study in Quebec, Canada." Hydrological Sciences Journal, IAHS, Vol. 60, No. 2, pp. 247-268. https://doi.org/10.1080/02626667.2013.875177
  4. Brahimi, B., Chebana, F., and Necir, A. (2015). "Copula representation of bivariate L-moments: a new estimation method for multiparameter twodimensional copula models." Statistics, Vol. 49, No. 3, pp. 497-521. https://doi.org/10.1080/02331888.2014.932792
  5. Chebana, F., and Ouarda, T. B. M. J., (2007). "Multivariate L-moment homogeneity test." Water Resources Researches, AGU, Vol. 43, No. 8.
  6. Chebana, F., and Ouarda, T. B. M. J. (2009), "Index flood-based multivariate regional frequency analysis." Water Resource Researches, AGU, Vol. 45, No. 10.
  7. Heo, J.-H., Lee, Y. S., Nam, W. S., and Kim, K.-D. (2007b). "Application of regional rainfall frequency analysis in South Korea (II): Monte Carlo simulation and determination of appropriate method." Journal of Korean Society of Civil Engineering, KSCE, Vol. 27 No. 2B, pp. 113-123.
  8. Heo, J.-H., Lee, Y. S., Shin, H., and Kim, K.-D. (2007a). "Application of regional rainfall frequency analysis in South Korea (I): Rainfall quantile estimation." Journal of Korean Society of Civil Engineering, KSCE, Vol. 27, No. 2B, pp. 101-111.
  9. Hosking, J. R. M., and Wallis, J .R. (2005). Regional frequency analysis: an approach based on L-moments. Cambridge University Press.
  10. Joo, K., Shin, J.-Y., and Heo, J.-H., (2012). "Bivariate frequency analysis of rainfall using copula model." Journal of the Korea Water Resources Association, KWRA, Vol. 45, No. 8, pp. 827-837. https://doi.org/10.3741/JKWRA.2012.45.8.827
  11. Kim, J. W., Nam, W. S., Shin, J.-Y., and Heo, J.-H. (2008). "Regional frequency analysis of South Korean rainfall data using FORGEX method." Journal of the Korea Water Resources Association, KWRA, Vol. 41, No. 4, pp. 405-412. https://doi.org/10.3741/JKWRA.2008.41.4.405
  12. Kim, J.-Y., So, B.-J., Kim, T.-W., Kwon, H.-H., (2016a). "A development of trivariate drought frequency analysis approach using copula function." Journal of the Korea Water Resources Association, KWRA, Vol. 49, No. 10, pp. 823-833. https://doi.org/10.3741/JKWRA.2016.49.10.823
  13. Kim, S., Ahn, H., Shin, H., and Heo, J.-H. (2016b). "Development of spatial dependence formula of FORGEX method using rainfall data in Korea" Journal of the Korea Water Resources Association, KWRA, Vol. 49, No. 12, pp. 1007-1014. https://doi.org/10.3741/JKWRA.2016.49.12.1007
  14. Lee, J.-Y., Park, D.-H., Shin, J.-Y., and Kim, T.-W. (2016). "Estimating design floods for ungauged basins in the geumriver basin through regional flood frequency analysis using L-moments method." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 8, pp. 646-656.
  15. Nam, W. S., Kim, T., Shin, J.-Y., and Heo, J.-H. (2008). "Regional rainfall frequency analysis by multivariate techniques." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 5, pp. 517-525. https://doi.org/10.3741/JKWRA.2008.41.5.517
  16. Nelsen, R. B. (2006). An introduction to copulas. Springer.
  17. Requena, A. I., Chebana, F., and Mediero, L. (2016). "A complete procedure for multivariate index-flood model application." Journal of Hydrology, Vol. 535, pp. 559-580. https://doi.org/10.1016/j.jhydrol.2016.02.004
  18. Shin, J.-Y., Jeong, C., Joo, K., and Heo, J.-H. (2018). "Hydrological homogeneous region delineation for bivariate frequency analysis of extreme rainfalls in Korea." Journal of the Korea Water Resources Association, KWRA, Vol. 51, No. 1, pp. 49-60. https://doi.org/10.3741/JKWRA.2018.51.1.49
  19. Song, H.-K., Joo, K., Jeong, J., and Heo, J.-H. (2016). "A comparative study on the inter-event time with the time-resolution of rainfall data." Proceedings Korea Water Resources Association Conference 2016, KWRA, p. 167.