• Title/Summary/Keyword: Large Complex Systems

Search Result 607, Processing Time 0.026 seconds

Trends of Flat Mold Machining Technology with Micro Pattern (미세패턴 평판 금형가공 기술동향)

  • Je, Tae-Jin;Choi, Doo-Sun;Jeon, Eun-Chae;Park, Eun-Suk;Choi, Hwan-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Recent ultra-precision machining systems have nano-scale resolution, and can machine various shapes of complex structures using five-axis driven modules. These systems are also multi-functional, which can perform various processes such as planing, milling, turning et al. in one system. Micro machining technology using these systems is being developed for machining fine patterns, hybrid patterns and high aspect-ratio patterns on large-area molds with high productivity. These technology is and will be applied continuously to the fields of optics, display, energy, bio, communications and et al. Domestic and foreign trends of micro machining technologies for flat molds were investigated in this study. Especially, we focused on the types and the characteristics of ultra-precision machining systems and application fields of micro patterns machined by the machining system.

Development of multiloop programmable controller using graphic control language (그래픽 제어 언어를 사용한 공정제어용 다중루프 제어기의 개발)

  • 이희규;문봉채;김병국;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.200-203
    • /
    • 1990
  • A multiloop programmable controller using graphic control language and a configuration graphic editor for designing control algorithm in graphic windows are developed. Using the graphic control language, large and complex control algorithm can be designed easily and the modification of control algorithm is simple. The proposed controller using graphic language can be effectively used for complex plants like power plants.

  • PDF

G-Networks Based Two Layer Stochastic Modeling of Gene Regulatory Networks with Post-Translational Processes

  • Kim, Ha-Seong;Gelenbe, Erol
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.8.1-8.6
    • /
    • 2011
  • Background: Thanks to the development of the mathematical/statistical reverse engineering and the high-throughput measuring biotechnology, lots of biologically meaningful genegene interaction networks have been revealed. Steady-state analysis of these systems provides an important clue to understand and to predict the systematic behaviours of the biological system. However, modeling such a complex and large-scale system is one of the challenging difficulties in systems biology. Results: We introduce a new stochastic modeling approach that can describe gene regulatory mechanisms by dividing two (DNA and protein) layers. Simple queuing system is employed to explain the DNA layer and the protein layer is modeled using G-networks which enable us to account for the post-translational protein interactions. Our method is applied to a transcription repression system and an active protein degradation system. The steady-state results suggest that the active protein degradation system is more sensitive but the transcription repression system might be more reliable than the transcription repression system. Conclusions: Our two layer stochastic model successfully describes the long-run behaviour of gene regulatory networks which consist of various mRNA/protein processes. The analytic solution of the G-networks enables us to extend our model to a large-scale system. A more reliable modeling approach could be achieved by cooperating with a real experimental study in synthetic biology.

A Study on the Design Method and the Effect Analysis for the Introduction of the Integrated System Model of Individual Urban Utility Plants (에너지공급시설 및 환경기초시설의 복합화 방안 및 적용효과 분석)

  • Lee, Tae-Won;Kim, Yong-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.235-240
    • /
    • 2005
  • Recently urban utility plants in urban areas of Korea, such as energy supply systems, municipal waste incineration systems, sewage treatment systems and so on, have caused some critical troubles, for instance the insensitive response to the seasonal or daily variation of loads, the low system efficiency and inefficient use of energy because of the large-scale system located a great distance. Therefor the design method of optimal integrated system model of various urban utility plants proposed in this study suitably to the present situation of Korea. Also, the effect analysis for the introduction of compound utility plants was studied for a new town model on a 60,000 persons scale. As the results we found that the complex plant was superior to individual urban utility plant in side of the initial investment expenses, the operating cost and other reasons.

  • PDF

Efficient Model Checking of Asynchronous Systems Exploiting Temporal Order-Based Reduction Method

  • Yamada, Chikatoshi;Nagata, Yasunori;Nakao, Zensho
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1964-1967
    • /
    • 2002
  • Recently design verification have been played an important role in the design of large scale and complex systems. In this article, we especially focus on model checking methods. Behaviors of modeled systems are generally specified by temporal formulas of computation tree logic. However. Users must know well temporal specification because the specification might be complex. We proposed method that temporal formulas are gained inductively and amounts of memory and time are reduced. Finally, we will show verification results using our proposed method.

  • PDF

Broadcast Scheduling for Wireless Networks Based on Theory of Complex Networks (복잡계 네트워크 기반 무선 네트워크를 위한 브로드캐스트 스케줄링 기법)

  • Park, Jong-Hong;Seo, Sunho;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • This paper proposes a novel broadcast scheduling algorithm for wireless large-scale networks based on theory of complex networks. In the proposed algorithm, the network topology is formed based on a scale-free network and the probability of link distribution is analyzed. In this paper, the characteristics of complex systems are analyzed (which are not concerned by the existing broadcast scheduling algorithm techniques) and the optimization of network transmission efficiency and network time delay are provided.

A Study on the System Improvement for Efficient Management of Large-scale Complex Disaster (대형복합재난의 효율적 관리를 위한 제도개선방안 연구)

  • Kim, Taehoon;Youn, Junhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.176-183
    • /
    • 2018
  • Climate change, rapid urbanization, and population concentration have led to a higher frequency and magnitude of disasters in the world. Recently, the occurrence of large-scale complex disasters, which are caused by a combination of natural disasters, man-made disasters, and social disasters, is increasing. In Korea, there are many case studies of damage prediction and response technology development for individual natural disasters, such as earthquakes, floods, and typhoons. On the other hand, the system basis for the efficient response and management of large-scale complex disasters is insufficient. Therefore, this study examined the representative cases of natural, social disasters, and related cases of domestic disaster response management systems. In addition, this paper proposes ways to improve the legal system for complex disaster management policies and establish a cooperation system between the ministries for an efficient response.

Energy-saving Strategy Based on an Immunization Algorithm for Network Traffic

  • Zhao, Dongyan;Long, Keping;Wang, Dongxue;Zheng, Yichuan;Tu, Jiajing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1392-1403
    • /
    • 2015
  • The rapid development of both communication traffic and increasing optical network sizes has increased energy consumption. Traditional algorithms and strategies don't apply to controlling the expanded network. Immunization algorithms originated from the complex system theory are feasible for large-scale systems based on a scale-free network model. This paper proposes the immunization strategy for complex systems which includes random and targeted immunizations to solve energy consumption issues and uses traffic to judge the energy savings from the node immunization. The simulation results verify the effectiveness of the proposed strategy. Furthermore, this paper provides a possibility for saving energy with optical transmission networks.