• 제목/요약/키워드: Larch wood

검색결과 208건 처리시간 0.022초

아세틸화 침엽수재의 치수변화 특성 (Dimensional Change of Acetylated Softwood)

  • 한규성;조남석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권4호
    • /
    • pp.40-46
    • /
    • 1996
  • It is well-known fact that dimensional stability of wood is greatly enhanced by acetylation of wood. This dimensional stability results from bulking of the reacted acetate within the cell wall, which reduces further swelling when the modified woods corne into contact with water or water vapor. The purpose of this research was to determine the water absorption and dimensional stability of the acetylated solid wood in liquid water and in humidity tests. Radiata pine, Siberian larch, and Japanese larch were acetylated. Antiswelling efficiency(ASE) and equilibrium moisture content(EMC) of acetylated wood, at 95% RH and $20^{\circ}C$ after 4weeks, was quite dependent on WPG, but was not dependent on species.

  • PDF

Prediction of Withdrawal Resistance of Single Screw on Korean Wood Products

  • AHN, Kyung-Sun;PANG, Sung-Jun;OH, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권1호
    • /
    • pp.93-102
    • /
    • 2021
  • In this article, withdrawal resistances of axially loaded self-tapping screws on wood products made by Korean Larch were predicted with existing estimation equation, and compared with experimental test data. The research was required because no design methodology for the withdrawal resistance of self-tapping screw is present in Korean building code (KBC). First, the withdrawal resistance of wood screw was predicted to use the withdrawal design value estimation equation in National Design Specification for Wood Construction (NDS). Second, three types of wood products, solid wood, cross-laminated timber (CLT) and plywood, were utilized for withdrawal test. For decades, various engineered wood products have been developed, especially cross-laminated timber (CLT) and hybrid timber composites such as timber composites of solid wood and plywood. Therefore, CLT and plywood were also investigated in this study as well as solid wood. Finally, the predicted values were compared with experimentally tested values. As the results, the tested values of solid wood and CLT were higher than the predicted values. In contrast, it is inaccurate to predict withdrawal resistance of plywood since prediction was higher than tested values.

리기다소나무의 구조용 집성재 이용기술 개발 -낙엽송 층재와의 혼합 구성을 통한 집성재의 휨성능 향상- (Development of Pitch Pine Glued Laminated Timber for Structural Use -Improvement of Bending Capacity of Pitch Pine Glulam by Using Domestic Larch Laminars-)

  • 김광모;심국보;박주생;김운섭;임진아;여환명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권6호
    • /
    • pp.13-22
    • /
    • 2007
  • 주요 조림수종으로 도입 식재된 리기다소나무의 고부가가치 이용을 위한 구조용 집성재 이용 가능성을 검토하고, 이에 적합한 기술을 개발하기 위하여 본 연구를 수행하였다. 국산 리기다소나무 제재목의 기계응력등급은 대부분 E7에서 E9등급으로 집성재 제조에는 다소 불량한 것으로 나타났다. 반면 단일수종 및 혼합수종 구조용 집성재 제조에 필수적인 리기다소나무 및 낙엽소 판재의 접착성을 평가한 결과 전단접착력, 목파율, 침지 및 삶음박리율 모두 KS기준 이상으로 나타났다. 리기다소나무 단일수종 집성재의 휨성능을 측정해본 결과 휨강도는 KS의 집성재 강도등급에 따른 휨성능 합격기준을 만족한 반면 휨 탄성계수는 기준에 다소 못 미치는 결과를 나타내었다. 그러나 낙엽송 층재와의 혼합구성을 통해 리기다소나무 집성재의 휨성능(휨강도와 휨탄성계수)을 20% 향상시킬 수 있었으며, 층재 구성방법에 있어서는 판재의 탄성계수가 높고 품질이 우수한 낙엽송 층재를 외층에 배치하는 방법이 보다 효과적인 것으로 확인되었다. 결론적으로 리기다소나무의 부가가치 증진을 위한 구조용 집성재 이용은 그 가능성이 매우 컸다.

증기(蒸氣) 전처리(前處理)에 의(依)한 낙엽송(落葉松) 심재(心材)의 방부제(防腐劑) 처리도(處理度) 개선(改善)에 관(關)한 연구(硏究) (Studies on Improving Preservative Treatability of Japanese Larch Heartwood by Presteaming)

  • 강승모;백기현;김규혁
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.15-22
    • /
    • 1997
  • The effectiveness of presteaming for improving CCA treatability on refractory Japanese larch heartwood was investigated in this study. Presteaming was effective on improving treatability, and the extent of improvement was dependent on moisture contents of wood specimen and steaming conditions. Green wood showed higher average value in both preservative retention and penetration than dry wood, and steaming under pressure conditions also had higher treatability than steaming at atmospheric conditions. The degree of improvement for treatability was increased with the extension of steaming period. Treatability of dry wood pres teamed under pressure conditions more than 6 hours and green wood for 3 hours was similar to that enhanced by conventional incising. Presteaming green wood under pressure conditions more than 6 hours was more effective than conventional incising in improvement of CCA treatability, and resultant treatability satisfied a minimum value required for CCA-treated wood for being used at the regions of hazard class H3 and H4. In addition, an improvement of treatability by presteaming was due to an increase in permeability resulted from the degradation of hemicelluloses within aspirated pit membrane and cell wall, not the removal of extractives from pit membrane. The reduction in strength, measured as longitudinal compressive strength, due to pres teaming was related with the degradation of hemicelluloses, and was increased as steaming conditions were severe. The degree of strength reduction associated with presteaming treatment to obtain required treatability could be quantified from the relatively good relation between the increase in treatability and the decrease in strength.

  • PDF

Hygroscopicity and Surface Hardness of Domestic Wood Heat-Treated at $220^{\circ}C$

  • Kang, Ho-Yang
    • 한국가구학회지
    • /
    • 제19권4호
    • /
    • pp.229-234
    • /
    • 2008
  • In a previous study, it was revealed that three major softwoods, Japanese pine, Korean pine and Japanese larch, heat-treated at $220^{\circ}C$, could produce high quality dark-colored boards. It is known that heat treatment decreases the hygroscopicity of wood. The hygroscopicity of major domestic softwoods and hardwoods heat-treated at $220^{\circ}C$ was investigated by a saturated salt solution method and compared with that of black and white charcoals. Equilibrium moisture contents of wood decreased with the increase of heat treatment time. Isotherm shapes of wood species were different from those of charcoals. Heat treatment decreases the equilibrium moisture contents of black locust more than those of Korean pine and Japanese larch. It was found that surface hardness of wood is improved by heat treatment to a certain extent, but a longer heat treatment causes thermal degradation, resulting in the decrease of the surface hardness.

  • PDF

국산 낙엽송재의 횡압축과 다우얼 지압 성능 (Lateral Compression and Dowel Bearing Property of Japanese Larch Grown in Korea)

  • 황권환;박병수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권3호
    • /
    • pp.61-69
    • /
    • 2008
  • 구조부재의 압축성능을 검토하기 위하여 낙엽송 소재에 대해 섬유방향 및 섬유직각방향 압축시험을 행하였다. 시험편의 길이와 가압판의 크기에 따른 압축성능을 검토하였으며 현행 기준의 최소끝면거리의 적정성에 대해 검토하기 위하여 다우얼 지압지점으로부터 시험편의 섬유방향에 대해 변형율 변화를 측정하였다. 가압판의 크기에 따라 압축성능은 다르게 나타났으며, 다우얼형 파스너의 최소끝면거리(end distance)는 내부변형을 고려할 경우 현행 7 D보다 높게 적용하여야 안전한 것으로 나타났다.

시간스케쥴을 적용한 수종(數種)의 침엽수(針葉樹) 제재품(製材品)의 건조저항(乾燥抵抗) (Drying Resistance of Some Softwoods Lumbers under Time Schedule)

  • 정희석;이남호;이준호;권주용
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권2호
    • /
    • pp.67-74
    • /
    • 1997
  • A relationship between drying resistance and moisture content was found for 24, 27 and 30mm thick boards, and 45, 51 and 57mm thick dimensions of Japanese larch. Dahurian larch and radiata pine in order to modify the kiln schedule by using time schedules. The amount of drying resistance for Dahurian larch lumber was the highest, and radiata pine lumber was the lowest, on the basis of the same moisture content range. Drying resistance increased curvilinearly as moisture content decreased, and was higher for thicker lumber than for thinner lumber, at a given moisture content. Combined drying resistance for the three board thicknesses and the three dimension thicknesses showed a comparatively strong for radiata pine and a Japanese larch, while a weak correlation for Dahurian larch as a function of two independent variables, thickness and moisture content of lumber, respectively.

  • PDF

난연처리 제재목으로 제조한 구조용 집성재의 강도 성능평가 (Performance of Structural Glulam Manufactured with Fire Retardants Treated Lumbers)

  • 손동원;엄창득;박준철;박주생
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권4호
    • /
    • pp.477-482
    • /
    • 2014
  • 최근 목재이용에 대한 소비자의 요구가 다양화 되면서 목조 주택뿐만 아니라 공공건물 및 놀이시설 등에 고내구성 집성재에 대한 시장수요가 증가할 것으로 예상된다. 본 연구는 국산 낙엽송으로 제조한 구조용 집성재에 적합한 난연처리 기술개발 및 기준을 정립하기 위한 목적으로 수행되었다. 난연처리된 국산 낙엽송 제재목을 이용하여 구조용 집성재를 제조하고 제조 후 집성재에 미치는 영향을 조사하였다. 낙엽송 난연처리재의 경우 구조용 집성재의 강도조건에는 만족하였으나 난연제 처리에 의한 강도적인 감소와 박리 발생 등은 개선될 필요가 있었다. 집성재의 제조 후 주입식 난연처리 혹은 도포식 난연처리 기술 개발이 요구되었다.

침엽수재(針葉樹材)의 원목형질(原木形質)과 단판결함(單板缺陷)이 단판(單板) 및 합판제조수율(合板製造收率)에 미치는 영향(影響) (Effects of Softwood Log Property and Veneer Defect on Veneer-and Plywood Manufacturing Yield)

  • 서진석;박종영;조재명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제16권4호
    • /
    • pp.40-47
    • /
    • 1988
  • Our plywood manufacturing industries which entertained prosperous stage in late 1970's have come to be in face of the problems of conceedingly obtaining good quality logs and yield up-grading, which is considered by future-replaceable forest resources. In view of this point, manufacturing characteristic on softwood plywood using Japanese larch, pitch pine as domestic plantation species, and western hemlock as foreign species was studied. In this study, veneer- and plywood manufacturing yields were discussed in relation to log properties and veneer defects (knots). The summarized conclusions were as follows: 1. The majority of sample logs belonged to second grade on the standard. And, eccentricity of larch was the highest 11%, about 2 times those of pitch pine, hemlock. 2. Knot frequency of occurrence of larch reached 19% within log height 8m, and pitch pine 13% within 4m. Correspondingly, the log height of larch available for plywood manufacture was higher by about 2 times that of pitch pine. 3. In the knot types, most of knots of larch appeared dead, whereas those of pitch pine and hemlock appeared live. In size of knots, larch and hemlock showed relatively small 1-2cm dia. by 70% or more and pitch pine did the larger 24cm by 65%. Generally the more knot emerged in the inner side of veneer than the outer. 4. Plywood manufacturing yields by peeling with spindle revolution lathe were 37% in larch > 32% in hemlock> 26% in pitch pine. S. Jointed core veneer yields by peeling with outer perimeter back-up lathe were 55% in hemlock> 53% in larch> and 48% in pitch pine.

  • PDF

Manufacture of Cement-Bonded Particleboards from Korean Pine and Larch by Curing of Supercritical CO2 Fluid

  • Suh, Jin-Suk;Hermawan, Dede;Kawai, Shuichi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권4호
    • /
    • pp.41-50
    • /
    • 2000
  • Cement-bonded particleboard is being used as outdoor siding material all over the world, because this composite particularly bears a light weight, high resistance against fire, decay, and crack by cyclic freezing and thawing, anti-shock property, and strength enhancement. Construction systems are currently changing into a frame-building style and wooden houses are being constructed with prefabrication type. Therefore, they require a more durability at outdoor-exposed sides. In this study, the cement hydration property for Korean pine particle, Japanese larch particle and face- and middle layer particles (designated as PB particle below) used in Korean particleboard-manufacturing company was investigated, and the rapid manufacturing characteristics of cement-bonded particleboard by supercritical $CO_2$ curing was evaluated. Korean pine flour showed a good hydration property, however, larch flour showed a bad one. PB particle had a better hydration property than larch flour. The addition of $Na_2SiO_3$ indicated a negative effect on hydration, however, $MgCl_2$ had a positive one. Curing by supercritical $CO_2$ fluid gave a conspicuous enhancement in the performances of cement-bonded particleboards compared to conventional curing. $MgCl_2$ 3%-added PB particle had the highest properties, and $MgCl_2$ 1%-added Korean pine particle had the second class with the conditions of cement/wood ratio of 2.7, a small fraction-screened particle and supercritical curing. On the contrary, the composition of non-hammermilled or large fraction-screened particle at cement/wood ratio of 2.2 was poorer. Also, the feasibility for actual use of 3%-added, small PB particle-screened fraction was greatest of all the conventional curing treatments. Relative superiority of supercritical curing vs. conventional curing at dimensional stability was not so apparent as in strength properties. Through the thermogravimetric analysis, it was ascertained that the peak of a component $CaCO_3$ was highest, and the two weak peaks of calcium silicate hydrate and ettringite and $Ca(OH)_2$ were present in supercritical treatment. Accordingly, it was inferred that the increased formation of carbonates in board contributes to strength enhancement.

  • PDF