• Title/Summary/Keyword: Laplacian distribution

Search Result 46, Processing Time 0.023 seconds

AUTOMATIC DETECTION AND EXTRACTION ALGORITHM OF INTER-GRANULAR BRIGHT POINTS

  • Feng, Song;Ji, Kai-Fan;Deng, Hui;Wang, Feng;Fu, Xiao-Dong
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.6
    • /
    • pp.167-173
    • /
    • 2012
  • Inter-granular Bright Points (igBPs) are small-scale objects in the Solar photosphere which can be seen within dark inter-granular lanes. We present a new algorithm to automatically detect and extract igBPs. Laplacian and Morphological Dilation (LMD) technique is employed by the algorithm. It involves three basic processing steps: (1) obtaining candidate "seed" regions by Laplacian; (2) determining the boundary and size of igBPs by morphological dilation; (3) discarding brighter granules by a probability criterion. For validating our algorithm, we used the observed samples of the Dutch Open Telescope (DOT), collected on April 12, 2007. They contain 180 high-resolution images, and each has a $85{\times}68\;arcsec^2$ field of view (FOV). Two important results are obtained: first, the identified rate of igBPs reaches 95% and is higher than previous results; second, the diameter distribution is $220{\pm}25km$, which is fully consistent with previously published data. We conclude that the presented algorithm can detect and extract igBPs automatically and effectively.

A Novel Approach for Blind Estimation of Reverberation Time using Gamma Distribution Model

  • Hamza, Amad;Jan, Tariqullah;Jehangir, Asiya;Shah, Waqar;Zafar, Haseeb;Asif, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.529-536
    • /
    • 2016
  • In this paper we proposed an unsupervised algorithm to estimate the reverberation time (RT) directly from the reverberant speech signal. For estimation process we use maximum likelihood estimation (MLE) which is a very well-known and state of the art method for estimation in the field of signal processing. All existing RT estimation methods are based on the decay rate distribution. The decay rate can be obtained either from the energy envelop decay curve analysis of noise source when it is switch off or from decay curve of impulse response of an enclosure. The analysis of a pre-existing method of reverberation time estimation is the foundation of the proposed method. In one of the state of the art method, the reverberation decay is modeled as a Laplacian distribution. In this paper, the proposed method models the reverberation decay as a Gamma distribution along with the unification of an effective technique for spotting free decay in reverberant speech. Maximum likelihood estimation technique is then used to estimate the RT from the free decays. The method was motivated by our observation that the RT of a reverberant signal when falls in specific range, then the decay rate of the signal follows Gamma distribution. Experiments are carried out on different reverberant speech signal to measure the accuracy of the suggested method. The experimental results reveal that the proposed method performs better and the accuracy is high in comparison to the state of the art method.

Improved Rate-Distortion Estimation for Mode Decision in H.264/AVC (H.264/AVC에서 모드 결정을 위한 개선된 율-왜곡 예측)

  • Park, Ki-Hong;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.102-107
    • /
    • 2010
  • This paper presented a rate-distortion estimation method for effective mode decision in H.264/AVC. In this approach, in order to decide a mode, laplacian distribution modeling of DCT coefficients is utilized, which do not need to such process as quantization, entropy coding. From the simulation results, proposed a method showed that rate-distortion between proposed scheme and practical value was almost the same and performed 0.02dB of PSNR gain.

Determination of Channel Capacity Bounds of Narrow Band ISDN Subscriber Line in the Presence of Impulsive Noise (임펼스성 잡음이 있을때 협대역 ISDN 가입자 전송로의 통신로 용량 한계 결정)

  • Lee, Jong-Heon;Sung, Tae-Kyung;Chin, Yong-Ohk
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.854-858
    • /
    • 1987
  • This paper considers impulsive noise which produce burst error in high speed(approx.160Kbps) data transmission like ISDN(Integrated Servise Digital Network) using PSTN(Public Switching Telephone Network). To begin with, we obtains the transfer function of subscriber line to calculate the variation of bandwidth when the gain of receiver is fixed and channel capacity of non-gaussian channel in upper-and lower bound, and evaluates the transmission capability. In this paper compares channel capacity bounds which obtains when probability density function of impulsive noise is Laplacian distribution function with impulsive noise generated by waveform synthesier.

  • PDF

Precise Edge Detection Method Using Sigmoid Function in Blurry and Noisy Image for TFT-LCD 2D Critical Dimension Measurement

  • Lee, Seung Woo;Lee, Sin Yong;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • This paper presents a precise edge detection algorithm for the critical dimension (CD) measurement of a Thin-Film Transistor Liquid-Crystal Display (TFT-LCD) pattern. The sigmoid surface function is proposed to model the blurred step edge. This model can simultaneously find the position and geometry of the edge precisely. The nonlinear least squares fitting method (Levenberg-Marquardt method) is used to model the image intensity distribution into the proposed sigmoid blurred edge model. The suggested algorithm is verified by comparing the CD measurement repeatability from high-magnified blurry and noisy TFT-LCD images with those from the previous Laplacian of Gaussian (LoG) based sub-pixel edge detection algorithm and error function fitting method. The proposed fitting-based edge detection algorithm produces more precise results than the previous method. The suggested algorithm can be applied to in-line precision CD measurement for high-resolution display devices.

Hybrid Filter Design for a Nonlinear System with Glint Noise (글린트잡음을 갖는 비선형 시스템에 대한 하이브리드 필터 설계)

  • Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Ji-Bae;Shin, Jong-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.26-29
    • /
    • 2001
  • In a target tracking problem the radar glint noise has non-Gaussian heavy-tailed distribution and will seriously affect the target tracking performance. In most nonlinear situations an Extended Robust Kalman Filter(ERKF) can yield acceptable performance as long as the noises are white Gaussian. However, an Extended Robust $H_{\infty}$ Filter (ERHF) can yield acceptable performance when the noises are Laplacian. In this paper, we use the Interacting Multiple Model(IMM) estimator for the problem of target tracking with glint noise. In the IMM method, two filters(ERKF and ERHF) are used in parallel to estimate the state. Computer simulations of a real target tracking shows that hybrid filter used the IMM algorithm has superior performance than a single type filter.

  • PDF

Prediction Intervals for Day-Ahead Photovoltaic Power Forecasts with Non-Parametric and Parametric Distributions

  • Fonseca, Joao Gari da Silva Junior;Ohtake, Hideaki;Oozeki, Takashi;Ogimoto, Kazuhiko
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1504-1514
    • /
    • 2018
  • The objective of this study is to compare the suitability of a non-parametric and 3 parametric distributions in the characterization of prediction intervals of photovoltaic power forecasts with high confidence levels. The prediction intervals of the forecasts are calculated using a method based on recent past data similar to the target forecast input data, and on a distribution assumption for the forecast error. To compare the suitability of the distributions, prediction intervals were calculated using the proposed method and each of the 4 distributions. The calculations were done for one year of day-ahead forecasts of hourly power generation of 432 PV systems. The systems have different sizes and specifications, and are installed in different locations in Japan. The results show that, in general, the non-parametric distribution assumption for the forecast error yielded the best prediction intervals. For example, with a confidence level of 85% the use of the non-parametric distribution assumption yielded a median annual forecast error coverage of 86.9%. This result was close to the one obtained with the Laplacian distribution assumption (87.8% of coverage for the same confidence level). Contrasting with that, using a Gaussian and Hyperbolic distributions yielded median annual forecast error coverage of 89.5% and 90.5%.

Efficient Correlation Channel Modeling for Transform Domain Wyner-Ziv Video Coding (Transform Domain Wyner-Ziv 비디오 부호를 위한 효과적인 상관 채널 모델링)

  • Oh, Ji-Eun;Jung, Chun-Sung;Kim, Dong-Yoon;Park, Hyun-Wook;Ha, Jeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.23-31
    • /
    • 2010
  • The increasing demands on low-power, and low-complexity video encoder have been motivating extensive research activities on distributed video coding (DVC) in which the encoder compresses frames without utilizing inter-frame statistical correlation. In DVC encoder, contrary to the conventional video encoder, an error control code compresses the video frames by representing the frames in the form of syndrome bits. In the meantime, the DVC decoder generates side information which is modeled as a noisy version of the original video frames, and a decoder of the error-control code corrects the errors in the side information with the syndrome bits. The noisy observation, i.e., the side information can be understood as the output of a virtual channel corresponding to the orignal video frames, and the conditional probability of the virtual channel model is assumed to follow a Laplacian distribution. Thus, performance improvement of DVC systems depends on performances of the error-control code and the optimal reconstruction step in the DVC decoder. In turn, the performances of two constituent blocks are directly related to a better estimation of the parameter of the correlation channel. In this paper, we propose an algorithm to estimate the parameter of the correlation channel and also a low-complexity version of the proposed algorithm. In particular, the proposed algorithm minimizes squared-error of the Laplacian probability distribution and the empirical observations. Finally, we show that the conventional algorithm can be improved by adopting a confidential window. The proposed algorithm results in PSNR gain up to 1.8 dB and 1.1 dB on Mother and Foreman video sequences, respectively.

Efficient De-quantization Method based on Quantized Coefficients Distribution for Multi-view Video Coding (다시점 영상 부호화 효율 향상을 위한 양자화 계수 분포 기반의 효율적 역양자화 기법)

  • Park, Seung-Wook;Jeon, Byeong-Moon
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.386-395
    • /
    • 2006
  • Multi-view video coding technology demands the very high efficient coding technologies, because it has to encode a number of video sequences which are achieved from a number of video cameras. For this purpose, multi-view video coding introduces the inter-view prediction scheme between different views, but it shows a limitation of coding performance enhancement by adopting only new prediction method. Accordingly, we are going to achieve the more coding performance by enhancing dequantizer perfermance. Multi-view video coding is implemented basically based on H.264/AVC and uses the same quantization/de-quantization method as H.264/AVC does. The conventional quantizer and dequantizer is designed with the assumption that input residual signal follows the Laplacian PDF. However, it doesn't follow the fixed PDF type always. This mismatch between assumption and real data causes degradation of coding performance. To solve this problem, we propose the efficient de-quantization method based on quantized coefficients distribution at decoder without extra information. The extensive simulation results show that the proposed algorithm produces maximum $1.5\;dB{\sim}0.6\;dB$ at high bitrate compared with that of conventional method.

Edge Detection of Wide Band Width Spatial Frequency Components by the Diffusion Neural Network (확산 신경 회로망을 이용한 광대역 공간 주파수 성분의 윤곽선 검출)

  • Lee, Choong-Ho;Kwon, Yool;Kim, Jae-Chang;Nam, Ki-Gon;Yoon, Tae-Hoon
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.127-135
    • /
    • 1995
  • The diffusion neural network forms a Gaussian distribution by transferring an excitation to the surround. A DOG(difference of two Gaussians) is obtained by the diffusion neural network. This type of the DOG, which can detect the intensity changes of an image, has the same shape as a LOG(Laplacian of a Gaussian:${\Delta}^2$G) and narrow band pass characteristics. In this paper we show that another type of the DOG which has a very narrow Gaussian for the excitatory and a very wide Gaussian for the inhibitory, can be formed by the diffusion process of this network, This type of the DOG has a wide band width in spatial frequency domain and can be used efficiently in detecting special type of edges.

  • PDF