• Title/Summary/Keyword: Laplace domain

Search Result 125, Processing Time 0.027 seconds

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Sahan, Mehmet Fatih
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.889-907
    • /
    • 2015
  • This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

Denoising Laplace-domain Seismic Wavefields using Deep Learning

  • Lydie Uwibambe;Jun Hyeon Jo;Wansoo Ha
    • Economic and Environmental Geology
    • /
    • v.57 no.5
    • /
    • pp.499-512
    • /
    • 2024
  • Random noise in seismic data can significantly impair hydrocarbon exploration by degrading the quality of subsurface imaging. We propose a deep learning approach to attenuate random noise in Laplace-domain seismic wavefields. Our method employs a modified U-Net architecture, trained on diverse synthetic P-wave velocity models simulating the Gulf of Mexico subsurface. We rigorously evaluated the network's denoising performance using both the synthetic Pluto velocity model and real Gulf of Mexico field data. We assessed the effectiveness of our approach through Laplace-domain full waveform inversion. The results consistently show that our U-Net approach outperforms traditional singular value decomposition methods in noise attenuation across various scenarios. Numerical examples demonstrate that our method effectively attenuates random noise and significantly enhances the accuracy of subsequent seismic imaging processes.

Vibration Damping Analysis of Viscoelastic and Viscoelastically Damped Structures (점탄성 또는 점탄성 감쇠처리된 구조물의 진동 감쇠 해석)

  • 황원재;박진무
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.64-73
    • /
    • 2000
  • We present finite element equations in the Laplace-domain for linear viscoelastic and viscoelstically damped structures governed by a constitutive equation involving factional order derivative opeartors. These equations yield a nonstandard eigenproblem consisted of frequency dependent stiffness matrix. To solve this nonstandard eigenproblem we suggest an eigenvalue iteration procedure in the Laplace-domain. Improved Zenor and GHM material function type constitutive equations in the Laplace-domain are also available for this procedure. From above equations, complex eigenvalues and complex eigenvectors are obtained. Using obtained eigenvalues and eigenvectors, time domain analysis is performed by means of mode superposition. Finally, finite element solutions of viscoelastic and viscoeleastically damped sandwich beam are presented as an example.

  • PDF

The impact analysis of interface crack in dissimilar materials using the 2-D laplace transformed BEM (2차원 Laplace 변환 경계요소법에 의한 이종재료 접합면 균열의 충격해석)

  • 김태규;조상봉;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1158-1168
    • /
    • 1994
  • For BEM analyses of the impact problems of dissimilar materials, the connected multi-region method using perfect bonded conditions on the interface boundaries was added to two-dimensional Laplace transformed-domain BEM program for a single region analysis. It was confirmed that the BEM results of impact problems of a single-region and multi-regions for a homogeneous isotropic material are agreed well. The two-dimensional Laplace transformed-domain BEM program combined with connected multi-region method was applied to analyse several impact problems of dissimilar materials. Also the feasibility of BEM impact analyses was investigated for dissimilar materials by the analysis of the BEM results for impact problems of dissimilar materials in terms of physical aspects. As for an application, the two-dimensional Laplace transformed BEM concerning impact problems of cracks at the interface of dissimilar materials and the determinating process of the dynamic stress intensity factors by extrapolation method are presented in this paper.

Analysis of One-Dimensional Transient Heat Conduction Problems using Hybrid Laplace Transform/finite Element Method (라플라스 변환과 유한요소법의 결합에 의한 1차원 과도 열전도 문제 해석)

  • Song, Byoung-Chul;Jung, Hae-Duk;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.309-311
    • /
    • 1997
  • In this paper, it is proposed that a algorithm which is applicable to the transient analysis by combined use of the Laplace transform and the finite element method. The proposed method removes the time terms using the Laplace transform and then solves the associated equation with the finite element method. The solution which is solved at frequency domain is transformed into time domain by use of the Laplace inversion. To verify proposed algorithm, heat conduction problem is analysed and found a good agreement with analytic solution.

  • PDF

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

Some Integral Equalities Related to Laplace Transformable Function

  • Kwon, Byung-Moon;Kwon, Oh-Kyu;Lee, Myung-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.151.1-151
    • /
    • 2001
  • This paper establishes some integral equalities formulated by zeros located in the convergence region of Laplace transformable function. Using the definition of Laplace transform, it is shown that time-domain integral equalities have to be satisfied by the function, and those can be applied to understanding of the fundamental limitations of the control system represented by the transfer function, which has been Laplace transform. In the unity-feedback control scheme, another integral equality is also derived on the output response of the system with open-loop poles and zeros located in the convergence region.

  • PDF

Deep-Learning Seismic Inversion using Laplace-domain wavefields (라플라스 영역 파동장을 이용한 딥러닝 탄성파 역산)

  • Jun Hyeon Jo;Wansoo Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.84-93
    • /
    • 2023
  • The supervised learning-based deep-learning seismic inversion techniques have demonstrated successful performance in synthetic data examples targeting small-scale areas. The supervised learning-based deep-learning seismic inversion uses time-domain wavefields as input and subsurface velocity models as output. Because the time-domain wavefields contain various types of wave information, the data size is considerably large. Therefore, research applying supervised learning-based deep-learning seismic inversion trained with a significant amount of field-scale data has not yet been conducted. In this study, we predict subsurface velocity models using Laplace-domain wavefields as input instead of time-domain wavefields to apply a supervised learning-based deep-learning seismic inversion technique to field-scale data. Using Laplace-domain wavefields instead of time-domain wavefields significantly reduces the size of the input data, thereby accelerating the neural network training, although the resolution of the results is reduced. Additionally, a large grid interval can be used to efficiently predict the velocity model of the field data size, and the results obtained can be used as the initial model for subsequent inversions. The neural network is trained using only synthetic data by generating a massive synthetic velocity model and Laplace-domain wavefields of the same size as the field-scale data. In addition, we adopt a towed-streamer acquisition geometry to simulate a marine seismic survey. Testing the trained network on numerical examples using the test data and a benchmark model yielded appropriate background velocity models.

Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation

  • Lata, Parveen;Kaur, Iqbal
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.779-793
    • /
    • 2019
  • The purpose of this research paper is to depict the thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation in generalized LS theories of thermoelasticity. The Laplace and Fourier transform techniques have been used to find the solution of the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain numerically. The effect of two temperature and relaxation time are depicted graphically on the resulting quantities.

Theoretical analysis of transient wave propagation in the band gap of phononic system

  • Lin, Yi-Hsien;Ma, Chien-Ching
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.15-29
    • /
    • 2013
  • Phononic system composed of periodical elastic structures exhibit band gap phenomenon, and all elastic wave cannot propagate within the band gap. In this article, we consider one-dimensional binary materials which are periodically arranged as a 20-layered medium instead of infinite layered system for phononic system. The layered medium with finite dimension is subjected to a uniformly distributed sinusoidal loading at the upper surface, and the bottom surface is assumed to be traction free. The transient wave propagation in the 20-layered medium is analyzed by Laplace transform technique. The analytical solutions are presented in the transform domain and the numerical Laplace inversion (Durbin's formula) is performed to obtain the transient response in time domain. The numerical results show that when a sinusoidal loading with a specific frequency within band gap is applied, stress response will be significantly decayed if the receiver is away from the source. However, when a sinusoidal force with frequency is out of band gap, the attenuation of the stress response is not obvious as that in the band gap.