• Title/Summary/Keyword: Lap joints

Search Result 199, Processing Time 0.031 seconds

Optimum Design of Co-cured Steel-Composite Tubular Single Lap Joints (동시경화 강철-복합재료 원형 단일 겹치기 조인트의 최적설계)

  • Jo, Deok-Hyeon;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1203-1214
    • /
    • 2000
  • In this paper, a failure model for co-cured steel-composite tubular single lap joints has been proposed incorporating the nonlinear mechanical behavior of steel adherends and different failure mode s such as steel adherend failure and composite adherend failure. The characteristics of the co-cured steel-composite tubular single lap joint were investigated with respect to the test temperature, the stacking sequence of composite adherend, the thickness ratio of steel adherend to composite adherend, and the scarf ratio of steel adherend. Thus, the optimum design method for the co-cured steel-composite tubular single lap joint was suggested.

Fundamental Study of Lap Joint on FSW (마찰교반접합에 의한 겹치기 이음부의 기초적 연구)

  • Lee, Jung-Heon;Park, Gyeong-Chae;Lee, Seon-Hong;Go, Yeong-Bong
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.180-182
    • /
    • 2005
  • Development of FSW for use in lap joint production would expend the number of applications that could benefit from the technique. In the study, an extensive investigation was carried out on FSW lap joints, including interface morphology and mechanical properties. Welding variables included welding speed, rotation speed and, of particular importance, lap joint a methods. Examination of metallographic cross sections and failure locations showed a critical sheet interface present in all welds. Results indicates FSW lap joints may potentially replace other joining processes like resistance spot welding and riveting.

  • PDF

Evaluation of Stress Distribution and Corrosion Fatigue Strength on Spot Welded Lap Joint of Coated Thin Steel Plate (표면처리 박강판 spot용접 이음재의 응력분포와 부식피로강도 평가)

  • 배동호;임동진
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.36-45
    • /
    • 1996
  • Fatigue strength of the spot welded lap joint is considerably influenced by corrosive environments. Particularly, the chloride and the sulfide are most injurious to strength of the spot welded lap joint. Therefore, there is a need to evaluate its effect to corrosion fatigue strength for safe life design of spot welded structures. In order to evaluate their corrosion fatigue strength, corrosion fatigue tests on the spot welded lap joints of the uncoated and the coated high strength steel sheets were conducted in air and in 10% NaCl solution. Corrosion fatigue strength of the uncoated specimens were entirely lower than the coated one in NaCl solution, but those of the coated specimens in NaCl solution were lower than in air. And stress distribution in single spon welded lap joint subjected to tension-shear load was investigated by the finite element method. Using these results, we tried to evaluate corrosion fatgue strength of the various spot welded lap joints with maximum stress $\sigma_{max}$ at edge on loading side of the spot welded lap joint. We could find that corrosion fatigue strength could be quantitatively and systematically rearranged by $\sigma_{max}$.

  • PDF

Tensile load bearing capacities of co-cured single and double lap joints (외면 및 양면겹치기 동시경화조인트의 인장하중 전달용량에 관한 연구)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.95-98
    • /
    • 2001
  • Co-cured joining method is an efficient joining technique because both curing and bonding processes for the composite structures can be achieved simultaneously. It requires neither an adhesive nor a surface treatment of the composite adherend because the excess resin, which is extracted from composite materials during consolidation, accomplishes the co-cured joining process. In this paper, we considered three bond parameters, affecting tensile load bearing capacity of the co-cured single and double lap joints. Filially, we nave presented optimal bonding conditions for co-cured single and double lap joints with steel and composite adherends under tensile loads.

  • PDF

Failure Prediction of Composite Single Lap Bonded Joints (복합재료 Single Lap 접합 조인트의 파손 예측)

  • Kim Kwang-Soo;Jang Young-Soon;Yi Yeong-Moo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.73-77
    • /
    • 2004
  • Failure predictions of composite single-lap bonded joints were performed considering both of composite adherend failure and bondline failure. An elastic-perfectly plastic model of adhesive and a delamination failure criterion are used. The failure prediction results such as failure mode and strength have very good agreements with the test results of joint specimens with various bonding methods and parameters. The influence of variations in the effective strength (that is, adhesion performance) and plastic behavior of adhesive on the failure characteristics of composite bonded joints are investigated numerically. The numerical results show that optimal joint strength is archived when adhesive and delamination failure occur in the same time.

  • PDF

Nondestructive Strength Evaluation of Adhesive-Bonded Single-Lap Joints by Signal Processing Method (신호처리기법을 이용한 단순겹치기 접착이음의 비파괴적 강도평가)

  • Jeong, Il-Hwa;O, Seung-Kyu;Hwang, Yeong-Taik;Jang, Chul-Seob;Jeong, Eui-Seob;Yi, Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.541-546
    • /
    • 2001
  • Application of bonding by adhesives can be found in many industries, particularly in advanced technological domains such as the aeronautical and space industries, automobile manufacture, and electronics. Periodic inspection with conventional ultrasonic NDE techniques is capable of indicating the presence and possible location of crack. Continuous ultrasonic attenuation monitoring has potential to supply information. This study used adhesive-bonded single-lap joints specimen to evaluate such possibility by ultrasonic signal processing method.

  • PDF

Structural Behavior Evaluation of Mg-GFRP Composite Single-Lap Bonded Joints With Different End Shapes (한 끝단 형상에 따른 마그네슘 합금과 유리섬유 복합소재 단일겹치기 본드 조인트 거동 분석)

  • Kim, Jung-Seok;Im, Jae-Young;Lee, Woo-Geun
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.391-396
    • /
    • 2014
  • In this study, the strength of magnesium-GFRP/epoxy single-lap bonded joints are experimentally evaluated with different end shapes. In order to achieve this, four different single-lap joints with different end shapes are fabricated and the failure load is measured under tensile loading tests. From the test results, the single-lap joint with a square end exhibits the lowest failure load while the single-lap joint with reverse tapering and a spew fillet has the highest stress values. It has 11.1% higher failure strength than the single-lap joint with a square end.

An Experimental Study on the Strength of Composite-to-Aluminum Hybrid Single-Lap Joints (복합재-알루미늄 단일겹침 하이브리드 체결부 강도 특성 실험 연구)

  • Kim, Jung-Jin;Seong, Myeong-Su;Kim, Hong-Joo;Cha, Bong-Keun;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.841-850
    • /
    • 2008
  • Strength and failure of composite-to-aluminum rivetted, bonded, and rivet/bonding hybrid single-lap joints were investigated by experiment. A total of 82 joint specimens were tested with 3 different overlap lengths and 2 types of stacking sequence. FM73m adhesive film and NAS9308-4-03 rivet were used for hybrid joints. While failure loads of the bonded and hybrid joints increased as the overlap length increased, failure loads of the rivetted joints were not affected by the overlap length. Effect of the stacking sequence was not remarkable in the simple bonded or rivetted joints. Failure loads of the hybrid joints, however, showed the maximum of 30% difference depending on the stacking sequence. Major failure mode of the bonded and hybrid joints was the delamination of the composite adherend and failure mode of riveted joints was the rivet failure with local bearing.

A Study on Test Method for Evaluating Root Resistance in Waterproofing and Root Resistance Membrane Used in Landscape Architecture - A Test Method for Evaluating Root Resistance that Use a Simulated Needle and a Rhizome - (조경 녹화용 방수.방근층의 방근 성능평가 시험방법에 관한 연구 - 모의 바늘과 지하경을 이용한 방근 성능평가 시험방법 -)

  • Yi, Jun-Ho;Pyo, Soon-Ju;Shin, Jin-Hak;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05c
    • /
    • pp.89-97
    • /
    • 2009
  • As landscaping building roofs and concrete structures increase gradually for low carbon green growth policy of government, But waterproofing membranes of those structures are effecting by root penetration of landscape plant. 80, we progressed study about test method for fast evaluating root resistance of waterproofing materials jointly with Tokyo Institute of Technology. The result of the study is as follows: (1) The penetrating load of the needle at the displacement speed of 1mm/min was measured for various membrane to basis and lap joints of membrane, the load force was $3{\sim}50$ N by material variously. (2) According to the test method of deriving rhizomes of bamboo grass to basis and lap joints of membrane, there were no penetrated membrane until present, but need persistent observation. (3) Test method of deriving rhizomes of bamboo grass to basis and lap joints of membrane can shorten from period of 2 years to 1 year for testing. Because rhizomes of bamboo grass can grow from May to September, test is possible in same period.

  • PDF

Humidity Aging Effect on Adhesive Strength of Composite Single-lap Joint

  • Kim, Myungjun;Kim, Yongha;Kim, Pyunghwa;Roh, Jin-Ho;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Because adhesively bonded joints are used in many structural systems, it is important to predict accurate adhesive strengths. Composite aircraft with many joints are easily exposed to low temperatures and high relative humidity. This paper presents a humidity aging effect on the adhesive strength of a composite single-lap joint (SLJ). The adhesive strength of the SLJ is predicted using a finite element analysis with a cohesive zone model (CZM) technique. The humidity aging effect is evaluated based on the adhesive strength and CZM parameters. A lap joint test is carried out on the composite SLJ specimens, which are exposed for four months of 100% R.H. at $25^{\circ}C$. The predicted strengths are in good agreement with experimental data, and the actual crack propagation is satisfactorily simulated using the local CZM technique.