• Title/Summary/Keyword: Lanthanides

Search Result 61, Processing Time 0.031 seconds

Electrochemical Behavior of Mordant Red 19 and its Complexes with Light Lanthanides

  • Sang Kwon Lee;Taek Dong Chung;Song-Ju Lee;Ki-Hyung Chjo;Young Gu Ha;Ki-Won Cha;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.567-574
    • /
    • 1993
  • Mordant Red 19(MR19) is reduced at mercury electrode at -0.67 V vs. Ag/AgCl with two electrons per molecule in pH 9.2 buffer by differential pulse polarography and linear sweep voltammetry. The peak potential is dependent on the pH of solution. The exhaustive electrolysis, however, gives 4 electrons per molecule because of the disproportionation of the unstable hydrazo intermediate. The electrochemical reduction of lanthanide-MR19 complexes is observed at more cathodic potential than that of free ligand. The difference in peak potentials between complex and free ligand varies from 75 mV for $La^{3+}$ to 165 mV for $Tb^{3+}$ and increases with increasing the atomic number of lanthanide. The electrochemical reduction of lanthanide complexes with MR19 is due to the reduction of ligand itself, and it can be potentially useful as an indirect method for the determination of lanthanides. The shape of i-E curves and the scan rate dependence indicates the presence of adsorption and the adsorption was confirmed by potential double-step chronocoulometry and the effect of standing time. Also the surface excess of the adsorbed species and diffusion coefficients are determined. The composition of the complex is determined to be 1 : 2 by spectrophotometric and electrochemical methods.

Fabrication and Scintillation Characteristics of LiPO3 glass scintillators with the lanthanides activators (란탄계열 원소를 활성체로 첨가한 LiPO3 유리 섬광체의 제작과 섬광특성)

  • Whang, J.H.;Lee, J.M.;Jung, S.J.;Choi, S.H.;Sumarokov, S. Yu.
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.139-148
    • /
    • 2003
  • $LiPO_3$ glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of $LiPO_3$ glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are $950^{\circ}C$ and 90 min, respectively. It was found that Pr, Nd, Gd, Ho, Er, Tm, Yb and Lu do not work as activator; emission spectrums of samples with them were equal to those of samples without activators. In the case of samples with Europium, the peaks of emission spectrum of $Eu^{2+}$ and $Eu^{3+}$ were 420 nm and 620 nm respectively. And samples with $Ce^{3+}$ were about 380 nm, and $Tb^{3+}$ were about 550 nm. Glass scintillators with $Be^{3+}$, $Eu^{2+}$, and $Ce^{3+}$ were found to be more applicable to neutron detection. The result of neutron detection by Ra-Be sources showed that $Ce^{3+}$ was found to be the best activator of $LiPO_3$.

Reductive reaction of U and Lanthanides using Cd-Li metal in LiCl-KCl Molten Salt (LiCl-KCl 용융염에서 Cd-Li 금속을 이용한 U 및 란탄족의 환원반응)

  • 우문식;이병직;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.339-339
    • /
    • 2004
  • 원자로를 이용하여 장수명핵종(long lived nucleus)을 소멸처리하는 과정에서 초우라늄(TRU, transuranium)과 희토류(RE, rare earth) 금속에 포함되어 있는 소량의 핵분열성(fissile) 물질인 우라늄을 제거할 필요가 있다. 본 실험은 LiCl-KCl 용융염계에서 전해제련법(Electrowinning)을 이용하여 용융염욕에 존재하는 우라늄을 제거하기 위하여 필요한 Cd-Li 양전극 물질을 제조하였고, 제조된 금속을 이용하여 우라늄 및 란탄족(Dy, Ce, Y, Nd, Gd) 금속의 환원 특성을 파악하였다.(중략)

  • PDF

1-D and 2-D Metal Oxide Nanostructures

  • Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.87-88
    • /
    • 2012
  • Metal oxide nanostructures have been applied to various fields such as energy, catalysts and electronics. We have freely designed one and two-dimensional (1 and 2-D) metal (transition metals and lanthanides) oxide nanostructures, characterized them using various techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction crystallography, thermogravimetric analysis, FT-IR, UV-visible-NIR absorption, Raman, photoluminescence, X-ray photoelectron spectroscopy, and temperature-programmed thermal desorption (reaction) mass spectrometry. In addition, Ag- and Au-doped metal oxides will be discussed in this talk.

  • PDF

Studies on the Intercalation between Montmorillonite and Lanthanides (몬모리노나이트와 란탄족 원소들과의 인터카레이숀에 관한 연구)

  • Young Gu Ha
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.488-492
    • /
    • 1986
  • The $Ca^{++}$ and $Mg^{++}$ released during Ca, Mg-Na exchange on Kampo 78 montmorillonite which was treated with various concentrations of NaCl solution, were measured with EDTA titration metbod in the leaching solutions. Lanthanide montmorillonite was prepared with various neutral lanthanide ions from sodium montmorillonite in which the exchangeable ions are displaced from the exchanger, such as the displacement of $Na^+$ by $Ln^{3+}$ ions, Cation exchange capacity (CEC) is determined on remaining lanthanides in the leaching solutions with E. D. T. A titration method. As a results of this study, there were no difference of C. E. C in series of lanthanide contraction, but C. E. C depends on charge density of montmorillonite. When we conformed the structure of Ln-montmorillonite by X-ray diffraction. It was found that there was much difference of pattern between Na-montmorillonite and Ln-montmorillonite.

  • PDF

A Study on Temperature and Retaining Ion Effect on the Separation of Lanthanides (란탄계열원소들의 양이온교환분리에서의 온도와 보유이온의 영향에 관한 연구)

  • Young-Gu Ha;Bong-Il Ji
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.601-606
    • /
    • 1989
  • The effects of temperature and retaining ion on the separation factor (${\alpha}$) and distribution ratio (D) of some lanthanides ($Pr^{3+},\;Nd^{3+},\;Sm^{3+},\;and\;Er^{3+}$) have been studied in the EDTA solution as an elutant by using Amberite IR 120 + resin. The retaining ions on the resin were ${NH_4}^+,\;Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+},\;Zn^{2+}$and $Ce^{3+}$. Separation factor of Nd/Pr is much improved by using $Ce^{3+}$ as retaining ion. The distribution ratios were decreased with the increase of temperature, but separation factors did not always increase with the increase of temperature. However, in the case of $Ce^{3+}$ as retaining ion, separation factors of Nd/Pr and Sm/Nd were increased with the increasing of temperature. And also in the case of $Zn^{2+}$ as retaining ion, separation factor of Er/Sm was increased with the increasing of temperature.

  • PDF

The Effect of Temperature and Flow Rate of Eluent on the Separation of Adjacent Lanthanides (La : Ce, Ce : Pr, Pr : Nd) with Displacement Chromatography (치환크로마토그래피에서 온도와 용리액의 흐름속도가 란탄족 원소들 (La : Ce, Ce : Pr, Pr : Nd) 의 분리에 미치는 영향)

  • Ha, Yeong Gu;Song, Gi Hun
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.9
    • /
    • pp.660-666
    • /
    • 1994
  • The effects of temperature and flow rate of eluent on the separation of adjacent lighter lanthanide pairs (La : Ce, Ce : Pr, Pr: Nd) have been studied with displacement chromatography. Two serial columns packed with Amberlite 120 cation exchange resin are used for loading and separation. The retaining ion is $H^+$ ion and the eluent is 0.012M and 0.015M of EDTA solution. The columns and the eluent are maintained at the temperature of 90$^{\circ}C$ and pressurized to reduce vaporizing in the ion-exchange resin column. The eluated solution is analyzed directly with ICP-AES. The separation factors of the lanthanide pairs, La: Ce, Ce :Pr, and Pr: Nd, are 4.6, 2.8, and 1.9, respectively and are higher than that from theoretical calculation at 25$^{\circ}C$. When the flow rate is reduced from 2.5 ml/min to 1.5 ml/min, the HETP is reduced from 1.60 cm to 0.88 cm. The separation efficency can be improved at lower flow rate of eluent and higher operating temperature. The recoveries of pure lanthanides than 99.9% are 49∼77% from this separation.

  • PDF

Retention Behavior of Lanthanide Complexes with $\alpha$ -hydroxyisobutyric Acid on Cation Exchanger (양이온 교환체에서 희토류원소와 $\alpha$-Hydroxyisobutyric Acid 착물들의 머무름 거동에 관한 연구)

  • Jo, Gi Su;Han, Seon Ho;Seo, Mu Yeol;Eom, Tae Yun;Kim, Yeon Du
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.582-592
    • /
    • 1990
  • Retention behavior of lanthanide-$\alpha$HiBA complexes was studied on the cation exchanger (LC-18 coated with $C_{20}H_{41}SO_4^-$). An equation predicting retention of lanthanides in isocratic or gradient elution with sodium ion and $\alpha$-HiBA concentration was derived from ion exchange equilibria of metal-ligand complex system, respectively. The relations between log k' and log [Na$^+$] /log [$\alpha$-HiBA) showed non-linearity in isocratic elution. In gradient elution a good linearity between log k' vs log R was obtained. The values of slopes (log k / log R) gave good agreements between calculation and experiment. Individual capacity factors ($k'_{Ln}^{3+}, k'_{LnL}^{2+}, k'{LnL2+}) and stability constant (${\beta}_1$, ${\beta}_2$, ${\beta}_3$) of lanthanide-$\alpha$HiBA complexes were calculated by the non-linear least square fittings using the retention equation. The correlation coefficients of lanthanides were shown better than 0.9996 between experiment and calculation.

  • PDF

Studies on Complexation of some Lanthanides with Diaza-18-crown-6-diisopropionic Acid (란탄족(III)족 이온과 Diaza-18-crown-6-diisopropionic Acid의 착화합물에 관한 연구)

  • Jung Suk Kim;Chang Heon Lee;Sun Ho Han;Moo Yul Suh;Tae Yoon Eom;Jin Ha Park
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.840-848
    • /
    • 1992
  • An ionizable macrocyclic ligand, diaza-18-crown-6-diisopropionic acid(K22DAP) has been synthesized. Protonation constants of this compound and stability constants with some lanthanides were determined by potentiometric titration method. The protonation constants are log$K_1$ = 9.05, log$K_2$ = 8.37, log$K_3$ = 1.88 and log$K_4$ = 0.99. The logarithmic values of stability constants with La(III), Nd(III), Gd(III) and Lu(III) are 11.14, 11.43, 11.74 and 10.88 respectively. Extraction behavior of Ln(III) ion was investigated using TTA(thenoyltrifluoroacetone) as extractant in the presence of K22DAP as macrocyclic ionophore. It was observed that Ln(K22DAP)TTA is the dominating species in aqueous complexes of La(III) and Nd(III).

  • PDF

A book review; "Rare earth elements in human and environmental health; at the crossroads between toxicity and safety"

  • Rim, Kyung-Taek
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.207-211
    • /
    • 2017
  • It is introduced an outstanding book about an important topic in occupational and environmental sciences i.e., the opportunities and challenges that may be connected with increasing the use and distribution of rare earth elements. These chemically similar elements, comprising the lanthanides, scandium, and yttrium, are involved in a number of essential technological applications, and their effects raise a number of human health issues of relevance to the occupational and environmental sciences. The book that I introduced here, "Rare Earth Elements in Human and Environmental Health; At the Crossroads between Toxicity and Safety" edited by Giovanni Pagano (Pan Stanford Publishing Pte. Ltd., Temasek Boulevard, Singapore) represents a break from that situation. It is essential to increase our knowledge about the environmental fate and biological effects of these technologically important metals in order to prevent unforeseen long-term man-made consequences to human health. This book is likely to become an important resource for scientists, engineers, and decision makers who understand the need for sensible exploitation of this resource.