• Title/Summary/Keyword: Lanthanide ion

Search Result 41, Processing Time 0.029 seconds

Luminescence behaviour of rare earth doped alkaline earth aluminates synthesized by combustion method (연소법에 의한 rare earth doped doped alkaline earth aluminates 형광체의 발광특성)

  • Jung, Young-Ho;Park, Jin-Won;Park, Jo-Yong;Khatkar, S.P.;Taxak, V.B.;Myung, Kwang-Shik;Han, Sang-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.581-584
    • /
    • 2002
  • A new method for the preparation of lanthanide ions activated strontium aluminates phosphor by combustion method has been proposed. Combustion method consist of the redox reactions between the respective metal nitrates and urea in a preheated funace at $500^{\circ}C$. The luminescence behavior of the phosphor was studied and compared with corresponding phosphor prepared by conventional method. Effect of $Mg^{2+}$ ion concentration in strontium aluminate phosphor was investigated and the maximum luminescence of about $100cd/m^2$ was obtained. This method gave better brightness and small size to the phosphor than made by conventional method.

  • PDF

The Stability Constant of 1, 7, 10, 16-Tetraoxa-4, 13-Diazacyclooctadecane-Uranium (Ⅵ) Complex in Aqueous Solution

  • Suh, Moo-Yul;Eom, Tae-Yoon;Kim, Si-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.5
    • /
    • pp.231-234
    • /
    • 1983
  • The stability constant for the complex of $UO_2^{2+}$ with a macrocyclic aminoether ligand, 1,7,10,16-tetraoxa-4,13-diazacyclooctadecane, has determined in aqueous solution. The conductivity and pH metric measurements suggest that the ligand forms a stable 1:1 complex with $UO_2^{2+}$ ion, and the complex is an ionic form, $UO_2L^{2+}$, in aqueous solution. The fact that the ligand does not form a complex with lanthanides, such as $Ce^{3+}$, $Sm^{3+}$, and $Nd^{3+}$ ions, in aqueous solution suggests a possibility of separation of the lanthanide elements from uranium matrix using the macrocyclic aminoether ligand.

Studies on the Complexes of Lanthanide ion with Multidentate Ligand (I). Determination of Thermodynamic Parameters with Solution Calorimetric Method in Nonaqueous Solvents (란탄족 원소의 여러자리 리간드 착물에 관한 연구 (제 1 보) 물아닌 용액에서 용액열량계에 의한 열역학적 함수결정)

  • Sam-Woo Kang;Won-Hae Koo;Soo-Min Lee;Chang Choo-Hwan;Moo-Yol Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.588-595
    • /
    • 1989
  • Log K, ${\Delta}$H and ${\Delta}$S for the complexation of $La^{3+},\;Ce^{3+}$ and $Eu^{3+}$with various multidentate ligand containing crown ether, diaza crown ether and diamine ether have been determined in methanol and acetonitril solutions at $25^{\circ}C$ by solution calorimetric titration method. The greater stability constant of $La^{3+}$-15C5 than those of 18C6 diaza [2.2] in methanol are discussed in terms of the size of metal ion and the ligand cavity and of metal ion solvation. The stabilities of $Ce^{3+}$ and $La^{3+}$ ion complexes with a various multidentate ligand in acetonitril are in the order of (diamine ether)<18C6<15C5$Ce^{3+}$, $La^{3+}$ and $Eu^{3+}$-diaza [2.2] complexes in acetonitril are increased with the following order: $Eu^{3+}$ < $La^{3+}$ < $Ce^{3+}$, that is increasing order of the optimum size and of the charge density of metal ion.

  • PDF

Microwave Dielectric Properties of 0.95Ca0.85Nd0.1TiO3−0.05LnAlO3 (Ln=Sm, Dy, Er) Ceramics

  • Kim, Eung-Soo;Jeon, Chang-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.537-541
    • /
    • 2007
  • Microwave dielectric properties of $0.95 Ca_{0.85}Nd_{0.1}TiO_3-0.05LnAlO_3$ (Ln=Sm, DH, Er) were investigated as a function of sintering temperature and lanthanide ion type. A single perovskite phase with an orthorhombic structure was obtained throughout the entire range of composition. The dielectric constant (K) was dependent upon the dielectric polarizabilities and the B-site bond valence in the $ABO_3$ perovskite structure. The quality factor (Qf) of the specimens with $ErAlO_3$ was smaller than those with $SmAlO_3\;and/or\;DyAlO_3$ due to the smaller grain size. The temperature coefficient of resonant frequency (TCF) could be controlled from $107.28ppm/^{\circ}C$ at Ln=Sm to $87.23ppm/^{\circ}C$ at Ln=Er due to the changes of B-site bond valence in the $ABO_3$ perovskite structure.

Superconductivity of infinite layer cuprate

  • Lee, Sung-Ik;Jung, Chang-Wook;Kim, Ji-Yeon;Kim, Heon-Jung;Park, Min-Seok
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.1-1
    • /
    • 2000
  • The infinite layer compound $ACuO_2$, (A-Alkaline earth) consists of infinite stacking of $CuO_2$ planes separated only by alkaline earth ions. This compound attracted much attention because it contains only key ingredient of all cuprate high temperature superconductor; $CuO_2$ plane with controllable carrier concentration without charge reservoir block. High pressure synthesis method has been found to be preferable for this system due to its ability of doping various lanthanide ion into A site with larger superconducting volume fraction. But rigorous study on this rudimentary compound has been hindered by insufficient quality of sample. Especially superconductlng volume fraction was often too small to identify its origin. In this presentation, we report high pressure synthesis of $Sr_{0.9}Ln_{0.1}CuO_2$ (Ln=La, Sm). By controlling the heating temperature precisely during high pressure synthesis we could have superconductors with quite high superconducting volume fraction for this compound. The magnetic properties of the graln aligned samples show very different behavior compared to the cuprate high temperature superconductors. Details will be discussed.

  • PDF

Stability Constants of First-row Transition Metal and Trivalent Lanthanide Metal Ion Complexes with Macrocyclic Tetraazatetraacetic and Tetraazatetramethylacetic Acids

  • 홍춘표;김동원;최기영;김창태;최용규
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.297-300
    • /
    • 1999
  • The protonation constants of the macrocyclic ligands, 1,4-dioxa-7,10,13,16-tetraaza-cyclooctadecane-N,N',N",N"'-tetra(acetic acid) [N-ac4[18]aneN402] and 1,4-dioxa-7,10,13,16-tetraazacyclooctadecane-1,4-dioxa-7,10,13,16-N,N',N",N"'-tetra(methylacetic acid) [N-meac4[18]aneN4O2] have been determined by using potentiometric method. The protonation constants of the N-ac4[18]aneN4O2 were 9.31 for logK1H, 8.94 for logK2H, 7.82 for logK3H, 4.48 for logK4H and 2.94 for logK5H. And the protonation constants of the N-meac4[18]aneN4O2 were 9.34 for logK1H, 9.13 for logK2H, 8.05 for logK3H, 5.86 for logK4H, and 3.55 for logK5H. The stability constants of complexes on the divalent transition ions (Co2+, Ni2+, Cu2+, and Zn2+) and tiivalent metal ions (Ce3+, Eu3+, Gd3+, and Yb3+) with ligands N-ac4[18]-aneN4O2 and N-meac4[18]aneN4O2 have been obtained from the potentiometric data with the aid of the BEST program. The three higher values of the protonation constants for synthesized macrocyclic ligands correspond to the protonation of nitrogen atoms, and the fourth and fifth values correspond to the protonation of the carboxylate groups for the N-ac4[18]aneN4O2 and N-meac4[18]aneN4O2. The meatal ion affinities of the two tetra-azamacrocyclic ligands with four pendant acetate donor groups or methylacetate donor groups are compared. The effects of the metal ions on the stabilities are discussed, and the trends in stability constants resulting from changing the macrocyclic ring with pendant donor groups and acidity of the metal ions.

Studies on the Optical and the Electrical Characterization of Organic Electroluminescence Devices of Europium Complex Fabricated with PVD(Physical Vopor Deposition) Technique (진공 증착법에 의하여 제작한 Europium complex 유기 박막 전기발광소자의 광학적.전기적 특성에 관한 연구.)

  • Lee, Myeong-Ho;Lee, Han-Seong;Kim, Yeong-Gwan;Kim, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.285-295
    • /
    • 1999
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays. They are attractive because of their capability of multi-color emission, and low operation voltage. An approach to realize such device characteristics is to use active layers of lanthanide complexes with their inherent extremely sharp emission bands in stead of commonly known organic dyes. In general, organic molecular compounds show emission due to their $\pi$-$\pi*$ transitions resulting in luminescence bandwidths of about 80 to 100nm. Spin statistic estimations lead to an internal quantum efficiency of dye-based EL devices limited to 25%. On the contrary, the fluorescence of lanthanide complexes is based on an intramolecular energy transfer from the triplet of the organic ligand to the 4f energy states of the ion. Therefore, theoretical internal quantum efficiency is principally not limited. In this study, Powders of TPD, $Eu(TTA)_3(phen) and AlQ_3$ in a boat were subsequently heated to their sublimation temperatures to obtain the growth rates of 0.2~0.3nm/s. Organic electrolumnescent devices(OELD) with a structure of $glass substrate/ITO/Eu(TTA)_3(phen)/AI, glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AI and glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AIQ_3AI$ structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, $Eu(TTA)_3(phen)$ as an emitting material, and Tris(8-hydroxyquinoline)Aluminum$(AlQ_3)$ as an electron transporting layer. Electroluminescent(EL) and current density-voltage(J-V) characteristics of these OELDs with various thickness of $Eu(TTA)_3(phen)$ layer were investigated. The triple-layer structure devices show the red EL spectrum at the wavelength of 613nm, which is almost the same as the photoluminescent(PL) spectrum of $Eu(TTA)_3(phen)$.It was found from the J-V characteristics of these devices that the current density is not dependent on the applied field, but on the electric field.

  • PDF

Structure analysis, and magnetic study of a new Gd-metal-organic framework single crystal grown by the slow-evaporation method (증발법으로 합성된 신규 가돌리늄 금속-유기골격체의 단결정 구조 분석 및 자성학적 특성 연구)

  • Song, Jeong Hwa
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.199-204
    • /
    • 2022
  • A new three-dimensional Gd-MOF, [Gd(p-XBP4)4(H2O)]·W(CN)8; (1; p-XBP4 = N,N'-p-phenylenedimethylenbis (pyridin-4-one)) has been synthesized by slow-evaporation and its crystal structure was characterized by single-crystal X-ray diffraction (SCXRD) analysis. For each GdIII ion, there are seven coordination sites, which are occupied by six oxygen atoms of six p-XBP4 ligands and one oxygen atom from the water molecule. The [W(CN)8]3- anion exists for charge balance with cationic framework. The GdII ions are interconnected by the p-XBP4 ligand to form the three-dimensional structure. Considering the magnetic property of lanthanide ions, magnetic studies of Gd-MOF were investigated by direct-current (DC) magnetic susceptibilities measurements.

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

The Stability Constant of Transition and Lanthanide Metal Ions Complexes with 15 Membered Macrocyclic Azacrown Ligands (거대고리 아자크라운화합물과 전이금속 및 란탄족금속이온의 착물의 안정도)

  • Hong, Choon-Pyo;Choi, Yong-Gu;Choppin, G.R.
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.577-582
    • /
    • 2004
  • The azacrown compounds, 1,4-dioxa-7,10,13-triazacyclopentadecane-N,N',N''-triacetic acid, $N-ac_3[15]aneN_3O_2(II_a)$ and 1,4-dioxa-7,10,13-triazacyclopentadecane-N,N',N''-tripropioc acid, $N-pr_3[15]aneN_3O_2(II_b)$ were synthesized by modified methods. Potentiometry was used to determine the protonation constant of the $N-ac_3[15]aneN_3O_2\;and\;N-pr_3[15]aneN_3O_2$. The stability constants of complexes of the trivalent metal ions of $Ce^{3+},\;Eu^{3+},Gd^{3+},and\;Yb^{3+}$ and divalent metal ions of $Co^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Zn^{2+}$ with the ligands $N-ac_3[15]aneN_3O_2\;and\;N-pr_3[15]aneN_3O_2$ have been determined at $25{\pm}0.1^{\circ}C$ in 0.1 M $NaClO_4$ solution by potentiometric methods. The metal ion affinities of the two triazamacrocyclic ligands with three pendant acetate or propionate groups are compared to those obtained for the similar ligands, 1,7-dioxa-4,10,13-triazacyclopentadecane-N,N',N''-triacetic acid, and 1,7-dioxa-4,10,13- triazacyclopentadecane-N,N',N''-tripropioc acid. The trends in stability of complexes for different metal ions due to changes in the nitrogen position of the donor atoms of the ligand are discussed.