• Title/Summary/Keyword: Lanthanide complexes

Search Result 68, Processing Time 0.029 seconds

Sensitized Near IR Luminescence of Er(Ⅲ) Ion in Lanthanide Complexes Based on Diketone Derivatives: Synthesis and Photophysical Behaviors

  • Baek, Nam-Seob;Kwak, Bong-Kyu;Kim, Yong-Hee;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1256-1260
    • /
    • 2007
  • Two β-diketone derivatives bearing triphenylene (1-naphthalene-2-yl-3-triphenylen-2-yl-propane-1,3-dione (NTPD)) and naphthalene (1,3-di-naphthalene-2-yl-propane-1,3-dione (DNPD)) and their Ln(III) complexes (Ln = Er or Gd) were synthesized and their photophysical properties were investigated. The sensitized emission of Er3+ ion in Er3+-[NTPD]3(terpy) and Er3+-[DNPD]3(terpy) was observed upon excitation at absorption maximum of ligands. Their photophysical studies indicate the sensitization of Er3+ luminescence by energy transfer through the excited triplet state of β-diketone ligand. The energy transfer rate through the excited triplet state of β-diketone ligand to Er3+ ion occurs faster than that of the oxygen quenching rate.

Studies on the Effect of Picolines on the Stereochemistry of Lanthanide(III) Nitrate Coordination Compounds of 4[N-Furfural)amino]antipyrine Semicarbazone and Antibacterial Activities (4[N-Furfural)amino]antipyrine Semicarbazone의 질산 란탄(III) 배위화합물의 입체화학에 미치는 Picolines의 영향과 항박테리아 활성)

  • Agarwal, Ram K.;Agarwal, Himanshu;Prasad, Surendra;Kumar, Anil
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.594-602
    • /
    • 2011
  • The effect of ${\alpha}$-, ${\beta}$- and ${\gamma}$-picolines on the stereochemistry of the coordination compounds of lanthanide(III) nitrates derived from 4[N-(furfural)amino]antipyrine semicarbazone (FFAAPS) has been studied. The general composition of the present coordination compounds is [Ln(FFAAPS)$(NO_3)_3$Pic] (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy or Ho and Pic=${\alpha}$-, ${\beta}$- or ${\gamma}$-picolines). All these coordination compounds have been characterized by elemental analyses, molecular weight, molar conductance, magnetic susceptibility, infrared and electronic spectra. The infrared studies suggest that the FFAAPS behaves as a neutral tridentate ligand with N, N, O donor while ${\alpha}$-, ${\beta}$- or ${\gamma}$-picoline is coordinated to the lanthanide(III) ions via heterocyclic N-atom. Nitrates are bicovalently bonded in these compounds. From the electronic spectral data, nephelauxetic effect (${\beta}$), covalence factor ($b^{1/2}$), Sinha parameter (${\delta}%$) and the covalence angular overlap parameter (${\eta}$) have been calculated. Thermal stabilities of these complexes have been studied by thermogravimetric analysis. The coordination number of lanthanide(III) ions in the present compound is found to be ten. The antibacterial studies screening of the primary ligand FFAAPS and the complexes showed that the present complexes have moderate antibacterial activities.

Lanthanide Complexes of Some High Energetic Compounds (II), Crystal Structures and Thermal Properties of Picrate Complexes

  • Yun, Sock-Sung;Kang, Sung-Kwon;Suh, Hong-Ryol;Suh, Hyung-Sock;Lee, Eun-Kwang;Kim, Jae-Kyung;Kim, Chong-Hyeak
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1197-1202
    • /
    • 2005
  • The Ln(III) complexes with picrate ligand, $[Sm(Pic)_2(H_2O)_6]Pic{\cdot}6H_2O$, 1, and $[Ho(Pic)(H_2O)_7](Pic)_2{\cdot}3H_2O$, 2, have been synthesized and their crystal structures are analyzed by X-ray diffraction methods. Complex 1, crystallizes in the monoclinic $P2_1/n$ space group and complex 2 in the triclinic P-1 space group. In complex 1, two picrate ligands coordinate to the Sm(III) ion, one of them in the bidentate fashion. There are one picrate anion and six water molecules in the crystal lattice. The nine-coordinated Sm(III) ion forms a slightly distorted tricapped trigonal prism. In complex 2, only one picrate ligand coordinates to the metal ion as a monodentate. There are two picrate anions and three water molecules in the crystal lattice. The eight-coordinated Ho(III) ion forms a distorted bicapped trigonal prism. Based on the results of the TG-DTG and DSC thermal analysis, it was analyzed that the lanthanide picrate complexes 1 and 2 are thermally decomposed in three distinctive stages, the dehydration, the picrate decomposition, and the formation of the metal oxide.

A Study on the Hypersensitive Transitions of Nd(III), Ho(III) and Er(III) Complexes in Aqueous Solution (수용액에서 몇가지 란탄 착화합물의 Hypersensitive Transition에 관한 연구)

  • Sock Sung Yun;Ki Young Choi;Kyoung Kyun Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.243-248
    • /
    • 1988
  • The hypersensitive $f{\rightarrow}f$ transitions of Nd(III), Ho(III), and Er(III) have been studied for some lanthanide complexes in aqueous solution. Based on the linear correlation between the oscillator strength of the transition and the basicity$(pK_a)$ of the ligand, the covalency in the metal-ligand bonding is discussed for lanthanide anthranilate, pyrazine-2-carboxylate, and pyruvate.

  • PDF

Synthesis, Spectral and Thermal Studies of Lanthanide(III) Complexes of Phenylbutazone (Phenylbutazone의 란탄(III) 착물에 대한 합성, 스펙트럼 및 열적 연구)

  • Anoop, M.R.;Binil, P.S.;Jisha, K.R.;Suma, S.;Sudarsanakumar, M.R.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.612-619
    • /
    • 2011
  • Lanthanide(III) complexes of 1,2-diphenyl-4-butyl-3,5-pyrazolidinedione(phenylbutazone, PB) have been synthesized and characterized by elemental analyses, molar conductance measurements, IR, UV-Vis. and NMR spectra. The spectral data reveal that the PB acts as a bidentate and mono-ionic ligand coordinating through both the carbonyl oxygens of the pyrazolidinedione ring. The molar conductance data suggest that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied by TG and DTG in air atmosphere and the results provide information about dehydration, thermal stability and thermal decomposition. The final products are found to be the corresponding metal oxides. The thermodynamic parameters and kinetic parameters were evaluated for the dehydration and decomposition stages. The negative entropy values of the decomposition stages indicate that the activated complexes have a more ordered structure than the reactants and that the reactions are slower than normal. Based on these studies, the complexes have been formulated as $[Ln(PB)_3]{\cdot}5H_2O$(Ln=La and Ce) and $[Ln(PB)_3(H_2O)_2]{\cdot}2H_2O$(Ln=Pr, Nd and Sm).

Energy Transfer Pathway in Luminescent Lanthanide Complexes Based on Dansyl-N-methylaminobenzoic Acid through Intramolecular Charge Transfer State for Near Infrared Emission

  • Roh, Soo-Gyun;Baek, Nam-Seob;Kim, Yong-Hee;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1249-1255
    • /
    • 2007
  • We have investigated the photophysical properties of dansyl-N-methylaminobenzoic acid (DABAH) as a ligand and its lanthanide (Ln3+)-cored complexes (Ln3+-(DABA)3(terpy)) in order to determine the main energy transfer pathway for sensitized near infrared emission of Ln3+ ions (Ln3+ = Nd3+ and Er3+) in Ln3+- (DABA)3(terpy). The fluorescence spectrum of DABAH shows a large Stokes shift with increasing solvent polarity. This large Stokes shift might be due to the formation of a twisted intramolecular charge transfer (TICT) state, as demonstrated by the large dipole moment in the excited state. It is in good agreement with the result that the phosphorescence even in the Gd3+-cored complex based on the DABAH ligand was not observed, maybe due to the highly forbidden character of the S1 → T1 transition in the DABAH ligand. A short decay component (ca. 1 ns) was observed in Er3+-(DABA)3(terpy) whereas the fluorescence lifetimes of DABAH and its Gd3+-(DABA)3(terpy) are observed about ~10 ns. The short component could be originated from the energy transfer process between the ligand and the Ln3+ ion. Based on the fluorescence of DABAH its Ln3+- (DABA)3(terpy), the sensitization of Ln3+ luminescence in the Ln3+-(DABA)3(terpy) takes place by the energy transfer via the TICT state of DABAH in the excited singlet state rather than via the excited triplet state.

Retention Behavior of Lanthanide Complexes with $\alpha$ -hydroxyisobutyric Acid on Cation Exchanger (양이온 교환체에서 희토류원소와 $\alpha$-Hydroxyisobutyric Acid 착물들의 머무름 거동에 관한 연구)

  • Jo, Gi Su;Han, Seon Ho;Seo, Mu Yeol;Eom, Tae Yun;Kim, Yeon Du
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.582-592
    • /
    • 1990
  • Retention behavior of lanthanide-$\alpha$HiBA complexes was studied on the cation exchanger (LC-18 coated with $C_{20}H_{41}SO_4^-$). An equation predicting retention of lanthanides in isocratic or gradient elution with sodium ion and $\alpha$-HiBA concentration was derived from ion exchange equilibria of metal-ligand complex system, respectively. The relations between log k' and log [Na$^+$] /log [$\alpha$-HiBA) showed non-linearity in isocratic elution. In gradient elution a good linearity between log k' vs log R was obtained. The values of slopes (log k / log R) gave good agreements between calculation and experiment. Individual capacity factors ($k'_{Ln}^{3+}, k'_{LnL}^{2+}, k'{LnL2+}) and stability constant (${\beta}_1$, ${\beta}_2$, ${\beta}_3$) of lanthanide-$\alpha$HiBA complexes were calculated by the non-linear least square fittings using the retention equation. The correlation coefficients of lanthanides were shown better than 0.9996 between experiment and calculation.

  • PDF

Electrochemical study on the Lanthanide-Alizarin Complexone Complexes (란탄족원소-ALC 착물의 전기화학적 연구)

  • Son, Byeong-Chan;Kim, Jae-Gyun;Park, Jong-Min
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.37-46
    • /
    • 1995
  • Electrochemical behavior of $Ln^{3+},$-ALC complexes($Gd^{3+},$ $Tb^{3+},$ $Dy^{3+},$ $Ho^{3+},$ $Er^{3+},$ $Yb^{3+}$ and $Lu^{3+}$-alizarin complex-one) has been investgated by d.c polarography, differential pulse polarography and cyclic voltammetry. The reduction mechanism of ALC comes to the conclusion that the two electron make one step of reversible processes, and that there is few adsorption in the electrode reaction. The new complex is made from one lanthanide ion and one ALC. This complex is proven to make an adsorptive complex wave, by the experiments of differential pulse polarography and cyclic voltammetry. The reduction potential of complex wave($P_2$)turns up more negatively than ligand wave($P_1$) does. Linear calibration curves of the decreasing P1 and increasing $P_2$ is obtained when the lanthanide concentration varys from $2.5X10^5$M to $1X10^4M$.

  • PDF

Photoluminescence analysis of Lewis base coordinate europium(III) β-diketonate complex (유로퓸(III) β-디케토네이트 착물의 루이스 염기 배위에 따른 발광 특성 분석)

  • Sung-Hwan, Lee;Gyu-Hwan, Lee
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2015
  • Lanthanide complexes have attracted much attention because of their unique light emitting property. The light-emitting efficiencies of europium β-diketonate complexes were compared with those of complexes coordinated by the ligands of amines or phosphine oxides. The results demonstrated that the complexes that were coordinated by phosphine oxides had higher light-conversion performance than those coordinated by amines. The highest light-emitting efficiency was observed when the ligand of trioctylphosphine oxide was coordinated. In order to determine the coordination equivalency of trioctylphosphine oxide in the above complexes, 31P-NMR and their photoluminescence spectra were measured. The findings showed that the europium β-diketonate complex had one or two coordination equivalencies of trioctylphosphine oxide according to the steric hindrance of its original ligand.