• Title/Summary/Keyword: Lanthanide(III) complexes

Search Result 36, Processing Time 0.027 seconds

Spectrophotometric Determination of Lanthanide Ions by Flow Injection Analysis (Flow Injection Analysis에 의한 란탄족 이온들의 흡광광도 정량)

  • Kang, Sam-Woo;Cho, Kwang-Hee
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.244-252
    • /
    • 1996
  • Spectrophotometric properties of lanthanide complexes with methylthymol blue(MTB) and cetyltrimethylammonium bromide(CTAB) were studied and also lanthanide(III) ions were determined by flow injection analysis on the base of the above results. The absorption maxima of lanthanide(III)-MTB complexes in the presence of CTAB are 635nm with molar absorptivity of $4.51{\sim}6.11{\times}10^4Lmol^{-1}cm^{-l}$ at pH 5.8. The mole ratio of lanthanide(III) complexes with MTB is 1:2 in the presence of CTAB. The calibration curves of lanthanide(III) ions obey the Beer's law in the range of 0.1 to 0.4ppm under the optimum condition. The samples throughput was ca. $60hr^{-1}$. The interfering effect of some cations and anions was investigated. The ligand anions such as tartrate and citrate, many transition and rare earth elements interfered severely and must be removed before the determination of lanthanide(III) ions.

  • PDF

Recent Progress in Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Kim, Hwan-Kyu;Oh, Jae-Buem;Baek, Nam-Seob;Roh, Soo-Gyun;Nah, Min-Kook;Kim, Yong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.201-214
    • /
    • 2005
  • We have designed and developed novel luminescent lanthanide complexes for advanced photonics applications. Lanthanide(III) ions (Ln$^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins and naphthalenes. The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to Ln$^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of Ln$^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent Ln$^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent Ln$^{3+}$ complexes, yielding novel Ln(III)-cored dendrimer complex. The novel Ln(III)-cored dendrimer complex has much higher PL intensity than the corresponding simple complex, due to the efficient site-isolation effect. In this article, we will deal with recent progress in the synthesis and photophysical studies of inert and stable luminescent Ln$^{3+}$ complexes for advanced photonics applications. Also, our review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to Ln$^{3+}$ ions with Ln(III)-chelated prototype complexes.

Studies on the Spectrophotometric Determination and Electrochemical Behavior of Heavy Lanthanide Ions in Nonaqueous System and Heavy Metal Chelate Complexes with Bidentate Legands: (Part I) Flow Injection Spectrophotometric Determination of Heavy Lanthanide Ions with Xylenol Orange

  • Sam-Woo Kang;Chong-Min Park;Kwang-Hee Cho;Hong-Seock Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.59-62
    • /
    • 1993
  • Spectrophotometric determination of some heavy lanthanide ions by flow injection method is described. Xylenol Orange forms water soluble chelates with lanthanide ions in a tris[hydroxymethyl]-aminomethane-buffered medium having pH 8.3 and containing cetyltrimethylammonium bromide. The molar absorptivities of Ln(III)-XO complexes were increased by the ternary system with cetyltrimethylammonium bromide with the concomitant bathochromic shift of absorption maxium compared to those of the binary system without cetyltrimethylammonium bromide. The calibration curves are linear in the range 0.25-1.00 ppm for Gd(III), Dy(III), Er(III), Tm(III) and Yb(III) and the dynamic range are very wide. The detection limits (S/N=2) are from 2 ppb for Gd(III) to 30 ppb for Yb(III) and the relative standard deviations are from 1.2% for 0.5 ppm Gd(III) to 1.8% for 0.5 ppm Yb(III). The sample throughput was ca. 50 $h^{-1}$.

Synthesis and Electrochemical Characteristics of Lantanium and Neodynium Metal Complexes (란탄늄 및 네오디늄 금속의 착물합성과 전기화학적 특성)

  • Oh, Je Jik
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.83-92
    • /
    • 1993
  • The electrochemical behaviors of lanthanide ion(La and Nd) and lanthanide complexes with 2, 2, 6, 6-tetramethyl-3, 5-heptanedione(THD), sym-hydroxydibenzo-16-crown-5(HD16C5) and sym-dibenzo-16-crown-5-oxyacetic acid(D16C5A) ligands in acton solution have been investigated by the use of cyclic voltammetry and direct current polarography. The peak potential and peak current, their dependency on the concentration, temperature, the reversibility of the eleotrode reactions are described. The reduction of the lanthanide ions and complexes in 0.05 M TEAP proceeded one-electron step in first step and one two-electron step in second step. These reduction step was irreversible and the reduction current was diffusion controlled. Macrovcyclic crown ethers, sym-hydroxydibenzo-16-crown-5(HD16C5) and sym-dibenzo-16-crown-5-oxyacetic acid(D16C5A), were prepared from 1, 5-bis-(2-hydroxyphenoxy)-3-oxapentane with epichlorohydrin. The voltammetric behaviors of Ln(III)-HD16C5 and Ln-D16C5A complexes in aceton solution have been investigated by the voltammetric method. The composition and stability constants of lanthanide complexes were determined.

  • PDF

Studies on the Effect of Picolines on the Stereochemistry of Lanthanide(III) Nitrate Coordination Compounds of 4[N-Furfural)amino]antipyrine Semicarbazone and Antibacterial Activities (4[N-Furfural)amino]antipyrine Semicarbazone의 질산 란탄(III) 배위화합물의 입체화학에 미치는 Picolines의 영향과 항박테리아 활성)

  • Agarwal, Ram K.;Agarwal, Himanshu;Prasad, Surendra;Kumar, Anil
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.594-602
    • /
    • 2011
  • The effect of ${\alpha}$-, ${\beta}$- and ${\gamma}$-picolines on the stereochemistry of the coordination compounds of lanthanide(III) nitrates derived from 4[N-(furfural)amino]antipyrine semicarbazone (FFAAPS) has been studied. The general composition of the present coordination compounds is [Ln(FFAAPS)$(NO_3)_3$Pic] (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy or Ho and Pic=${\alpha}$-, ${\beta}$- or ${\gamma}$-picolines). All these coordination compounds have been characterized by elemental analyses, molecular weight, molar conductance, magnetic susceptibility, infrared and electronic spectra. The infrared studies suggest that the FFAAPS behaves as a neutral tridentate ligand with N, N, O donor while ${\alpha}$-, ${\beta}$- or ${\gamma}$-picoline is coordinated to the lanthanide(III) ions via heterocyclic N-atom. Nitrates are bicovalently bonded in these compounds. From the electronic spectral data, nephelauxetic effect (${\beta}$), covalence factor ($b^{1/2}$), Sinha parameter (${\delta}%$) and the covalence angular overlap parameter (${\eta}$) have been calculated. Thermal stabilities of these complexes have been studied by thermogravimetric analysis. The coordination number of lanthanide(III) ions in the present compound is found to be ten. The antibacterial studies screening of the primary ligand FFAAPS and the complexes showed that the present complexes have moderate antibacterial activities.

A Study on the Hypersensitive Transitions of Nd(III), Ho(III) and Er(III) Complexes in Aqueous Solution (수용액에서 몇가지 란탄 착화합물의 Hypersensitive Transition에 관한 연구)

  • Sock Sung Yun;Ki Young Choi;Kyoung Kyun Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.243-248
    • /
    • 1988
  • The hypersensitive $f{\rightarrow}f$ transitions of Nd(III), Ho(III), and Er(III) have been studied for some lanthanide complexes in aqueous solution. Based on the linear correlation between the oscillator strength of the transition and the basicity$(pK_a)$ of the ligand, the covalency in the metal-ligand bonding is discussed for lanthanide anthranilate, pyrazine-2-carboxylate, and pyruvate.

  • PDF

Crystal Structures and Thermal Properties of 2,6-Dinitrophenol Complexes with Lanthanide Series

  • Kim, Eun-Ju;Kim, Chong-Hyeak;Kim, Jae-Kyung;Yun, Sock-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1157-1161
    • /
    • 2008
  • 2,6-Dinitrophenol (2,6-DNP) complexes with lanthanide series including yttrium (except Pm, Tm, and Lu) have been synthesized and their crystal structures have been analyzed by X-ray diffraction methods. Singlecrystal X-ray structure determinations have been performed at 296 K on the Ce$\rightarrow$Yb species and shown them to be isomorphous, triclinic, P1, a = 8.6558(2)$\rightarrow$8.5605(3) $\AA$, b = 11.8813(3)$\rightarrow$11.6611(4) $\AA$, c = 13.9650(3) $\rightarrow$13.8341(5) $\AA$, $\alpha$ = 73.785(1)$\rightarrow$73.531(2)o, $\beta$ = 74.730(1)→74.903(2)${^{\circ}}$, $\gamma$ = 69.124(1)→ 69.670 $(2){^{\circ}}$, V = 1266.86(5)→1221.53(7) $$\AA^{3}$$, Z = 2. In Ln(III) complexes, three 2,6-DNP ligands coordinate directly to the metal ion in the bidentate fashion. The nine coordinated Ln(III) ion forms slightly distorted tri-capped trigonal prism. There are no water molecules in the crystal lattice. The dependences of metal to ligand bond lengths are discussed on the atomic number of lanthanide elements. The thermal properties of lanthanide complexes of 2,6- DNP have also studied by TG-DTG and DSC thermal analysis methods.