• 제목/요약/키워드: Language prediction model

검색결과 124건 처리시간 0.028초

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

무선 네트워크에서 시퀀스-투-시퀀스 기반 모바일 궤적 예측 모델 (Sequence-to-Sequence based Mobile Trajectory Prediction Model in Wireless Network)

  • ;양희규;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.517-519
    • /
    • 2022
  • In 5G network environment, proactive mobility management is essential as 5G mobile networks provide new services with ultra-low latency through dense deployment of small cells. The importance of a system that actively controls device handover is emerging and it is essential to predict mobile trajectory during handover. Sequence-to-sequence model is a kind of deep learning model where it converts sequences from one domain to sequences in another domain, and mainly used in natural language processing. In this paper, we developed a system for predicting mobile trajectory in a wireless network environment using sequence-to-sequence model. Handover speed can be increased by utilize our sequence-to-sequence model in actual mobile network environment.

음질 및 속도 향상을 위한 선형 스펙트로그램 활용 Text-to-speech (Text-to-speech with linear spectrogram prediction for quality and speed improvement)

  • 윤혜빈
    • 말소리와 음성과학
    • /
    • 제13권3호
    • /
    • pp.71-78
    • /
    • 2021
  • 인공신경망에 기반한 대부분의 음성 합성 모델은 고음질의 자연스러운 발화를 생성하기 위해 보코더 모델을 사용한다. 보코더 모델은 멜 스펙트로그램 예측 모델과 결합하여 멜 스펙트로그램을 음성으로 변환한다. 그러나 보코더 모델을 사용할 경우에는 많은 양의 컴퓨터 메모리와 훈련 시간이 필요하며, GPU가 제공되지 않는 실제 서비스 환경에서 음성 합성이 오래 걸린다는 단점이 있다. 기존의 선형 스펙트로그램 예측 모델에서는 보코더 모델을 사용하지 않으므로 이 문제가 발생하지 않지만, 대신에 고품질의 음성을 생성하지 못한다. 본 논문은 뉴럴넷 기반 보코더를 사용하지 않으면서도 양질의 음성을 생성하는 Tacotron 2 & Transformer 기반의 선형 스펙트로그램 예측 모델을 제시한다. 본 모델의 성능과 속도 측정 실험을 진행한 결과, 보코더 기반 모델에 비해 성능과 속도 면에서 조금 더 우세한 점을 보였으며, 따라서 고품질의 음성을 빠른 속도로 생성하는 음성 합성 모델 연구의 발판 역할을 할 것으로 기대한다.

Improving Explainability of Generative Pre-trained Transformer Model for Classification of Construction Accident Types: Validation of Saliency Visualization

  • Byunghee YOO;Yuncheul WOO;Jinwoo KIM;Moonseo PARK;Changbum Ryan AHN
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.1284-1284
    • /
    • 2024
  • Leveraging large language models and safety accident report data has unique potential for analyzing construction accidents, including the classification of accident types, injured parts, and work processes, using unstructured free text accident scenarios. We previously proposed a novel approach that harnesses the power of fine-tuned Generative Pre-trained Transformer to classify 6 types of construction accidents (caught-in-between, cuts, falls, struck-by, trips, and other) with an accuracy of 82.33%. Furthermore, we proposed a novel methodology, saliency visualization, to discern which words are deemed important by black box models within a sentence associated with construction accidents. It helps understand how individual words in an input sentence affect the final output and seeks to make the model's prediction accuracy more understandable and interpretable for users. This involves deliberately altering the position of words within a sentence to reveal their specific roles in shaping the overall output. However, the validation of saliency visualization results remains insufficient and needs further analysis. In this context, this study aims to qualitatively validate the effectiveness of saliency visualization methods. In the exploration of saliency visualization, the elements with the highest importance scores were qualitatively validated against the construction accident risk factors (e.g., "the 4m pipe," "ear," "to extract staircase") emerging from Construction Safety Management's Integrated Information data scenarios provided by the Ministry of Land, Infrastructure, and Transport, Republic of Korea. Additionally, construction accident precursors (e.g., "grinding," "pipe," "slippery floor") identified from existing literature, which are early indicators or warning signs of potential accidents, were compared with the words with the highest importance scores of saliency visualization. We observed that the words from the saliency visualization are included in the pre-identified accident precursors and risk factors. This study highlights how employing saliency visualization enhances the interpretability of models based on large language processing, providing valuable insights into the underlying causes driving accident predictions.

Classification and prediction of the effects of nutritional intake on diabetes mellitus using artificial neural network sensitivity analysis: 7th Korea National Health and Nutrition Examination Survey

  • Kyungjin Chang;Songmin Yoo;Simyeol Lee
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1255-1266
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: This study aimed to predict the association between nutritional intake and diabetes mellitus (DM) by developing an artificial neural network (ANN) model for older adults. SUBJECTS/METHODS: Participants aged over 65 years from the 7th (2016-2018) Korea National Health and Nutrition Examination Survey were included. The diagnostic criteria of DM were set as output variables, while various nutritional intakes were set as input variables. An ANN model comprising one input layer with 16 nodes, one hidden layer with 12 nodes, and one output layer with one node was implemented in the MATLAB® programming language. A sensitivity analysis was conducted to determine the relative importance of the input variables in predicting the output. RESULTS: Our DM-predicting neural network model exhibited relatively high accuracy (81.3%) with 11 nutrient inputs, namely, thiamin, carbohydrates, potassium, energy, cholesterol, sugar, vitamin A, riboflavin, protein, vitamin C, and fat. CONCLUSIONS: In this study, the neural network sensitivity analysis method based on nutrient intake demonstrated a relatively accurate classification and prediction of DM in the older population.

합성곱 신경망 모델과 극단 모델에 기반한 발화자 연령 예측 (Prediction of the age of speakers based on Convolutional Neural Networks and polarization model)

  • 허탁성;김지수;오병두;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.614-615
    • /
    • 2018
  • 본 연구는 심층학습 기법을 활용하여 양극 데이터에 대해 학습된 모델로부터 예측된 결과를 바탕으로 언어 장애 여부를 판단하고, 이를 바탕으로 효율적인 언어 치료를 수행할 수 있는 방법론을 제시한다. 발화자의 개별 발화에 대해 데이터화를 하여 합성곱 신경망 모델(CNN)을 학습한다. 이를 이용하여 발화자의 연령 집단을 예측하고 결과를 분석하여 발화자의 언어 연령 및 장애 여부를 판단을 할 수 있다.

  • PDF

KBCNN: CNN을 활용한 지식베이스 완성 모델 (KBCNN: A Knowledge Base Completion Model Based On Convolutional Neural Networks)

  • 김지호;한기종;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.465-469
    • /
    • 2018
  • 본 논문에서는 지식베이스 완성을 위한 새로운 모델, KBCNN을 소개한다. KBCNN 모델은 CNN을 기반으로 지식베이스의 개체들과 관계들 사이의 연관성을 포착한다. KBCNN에서 각 트리플 <주어 개체, 관계, 목적어 개체>는 3개의 열을 가진 행렬로 표현되며, 각각의 열은 트리플의 각 원소를 표현하는 임베딩 벡터다. 트리플을 나타내는 행렬은 여러 개의 필터를 가지고 있는 컨볼루션 레이어를 통과한 뒤, 하나의 특성 벡터로 합쳐진다. 이 특성 벡터를 가중치 행렬과 내적 하여 최종적으로 해당 트리플의 신뢰도를 출력하게 된다. 이 신뢰도를 바탕으로 트리플의 진실 여부를 가려낼 수 있다. 지식베이스 완성 연구에서 가장 많이 사용되는 데이터셋인 FB15k-237을 기반으로 한 실험을 통해 KBCNN 모델이 기존 임베딩 모델들보다 뛰어난 성능을 보이는 것을 확인하였다.

  • PDF

생략복원을 위한 ELECTRA 기반 모델 최적화 연구 (Optimizing ELECTRA-based model for Zero Anaphora Resolution)

  • 박진솔;최맹식;;이충희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.329-334
    • /
    • 2021
  • 한국어에서는 문장 내의 주어나 목적어가 자주 생략된다. 자연어 처리에서 이러한 문장을 그대로 사용하는 것은 정보 부족으로 인한 문제 난이도 상승으로 귀결된다. 생략복원은 텍스트에서 생략된 부분을 이전 문구에서 찾아서 복원해 주는 기술이며, 본 논문은 생략된 주어를 복원하는 방법에 대한 연구이다. 본 논문에서는 기존에 생략복원에 사용되지 않았던 다양한 입력 형태를 시도한다. 또한, 출력 레이어로는 finetuning layer(Linear, Bi-LSTM, MultiHeadAttention)와 생략복원 태스크 형태(BIO tagging, span prediction)의 다양한 조합을 실험한다. 국립국어원 무형 대용어 복원 말뭉치를 기반으로 생략복원이 불필요한 네거티브 샘플을 추가하여 ELECTRA 기반의 딥러닝 생략복원 모델을 학습시키고, 생략복원에 최적화된 조합을 검토한다.

  • PDF

대화 맥락을 반영한 백채널 예측 모델 (Conversation Context-Aware Backchannel Prediction Model)

  • 최용석;박요한;;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.263-268
    • /
    • 2023
  • 백채널은 화자의 말에 언어 및 비언어적으로 반응하는 것으로 상대의 대화 참여를 유도하는 역할을 한다. 백채널은 보편형 대화 참여와 반응형 대화 참여로 나뉠 수 있다. 보편형 대화 참여는 화자에게 대화를 장려하도록 하는 단순한 반응이다. 반면에 반응형 대화 참여는 화자의 발화 의도를 파악하고 그에 맞게 반응하는 것이다. 이때 발화의 의미를 파악하기 위해서는 표면적인 의미뿐만 아니라 대화의 맥락을 이해해야 한다. 본 논문에서는 대화 맥락을 반영한 백채널 예측 모델을 제안하고 예측 성능을 개선하고자 한다. 대화 맥락을 요약하기 위한 방법으로 전체 요약과 선택 요약을 제안한다. 한국어 상담 데이터를 대상으로 실험한 결과는 현재 발화만 사용했을 때보다 제안한 방식으로 대화 맥락을 반영했을 때 성능이 향상되었다.

  • PDF

대화 맥락에 기반한 한국어 휴지 예측 모델 (Korean Pause Prediction Model based on Dialogue Context)

  • 이정;나정호;정정범;최맹식;이충희;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.404-408
    • /
    • 2023
  • 음성 사용자 인터페이스(Voice User Interface)에 대한 수요가 증가함에 따라 음성 합성(Speech Synthesis) 시스템에서 자연스러운 음성 발화를 모방하기 위해 적절한 위치에 휴지를 삽입하는 것이 주된 과업으로 자리잡았다. 대화의 연속성을 고려했을 때, 자연스러운 음성 기반 인터페이스를 구성하기 위해서는 대화의 맥락을 이해하고 적절한 위치에 휴지를 삽입하는 것이 필수적이다. 이에 따라 본 연구는 대화 맥락에 기반하여 적절한 위치에 휴지를 삽입하는 Long-Input Transformer 기반 휴지 예측 모델을 제안하고 한국어 대화 데이터셋에서 검증한 결과를 보인다.

  • PDF