References
- Jung CH, Son JW, Kang S, Kim WJ, Kim HS, Kim HS, Seo M, Shin HJ, Lee SS, Jeong SJ, et al. Diabetes fact sheets in Korea, 2020: an appraisal of current status. Diabetes Metab J 2021;45:1-10. https://doi.org/10.4093/dmj.2020.0254
- Chentli F, Azzoug S, Mahgoun S. Diabetes mellitus in elderly. Indian J Endocrinol Metab 2015;19:744-52. https://doi.org/10.4103/2230-8210.167553
- American Diabetes Association. 6. Glycemic targets. Diabetes Care 2017;40:S48-56. https://doi.org/10.2337/dc17-S009
- Ma Y, Olendzki B, Chiriboga D, Hebert JR, Li Y, Li W, Campbell M, Gendreau K, Ockene IS. Association between dietary carbohydrates and body weight. Am J Epidemiol 2005;161:359-67. https://doi.org/10.1093/aje/kwi051
- Frimpong EA, Oluwasanmi A, Baagyere EY, Zhiguang Q. A feedforward artificial neural network model for classification and detection of type 2 diabetes. J Phys Conf Ser 2020;1734:012026.
- Soh DCK, Ng EYK, Jahmunah V, Oh SL, Tan RS, Acharya UR. Automated diagnostic tool for hypertension using convolutional neural network. Comput Biol Med 2020;126:103999.
- Zhang Q, Liu Y, Liu G, Zhao G, Qu Z, Yang W. An automatic diagnostic system based on deep learning, to diagnose hyperlipidemia. Diabetes Metab Syndr Obes 2019;12:637-45. https://doi.org/10.2147/DMSO.S198547
- Isin A, Ozdalili S. Cardiac arrhythmia detection using deep learning. Procedia Comput Sci 2017;120:268-75. https://doi.org/10.1016/j.procs.2017.11.238
- Wagner JM, Shimshak DG. Stepwise selection of variables in data envelopment analysis: procedures and managerial perspectives. Eur J Oper Res 2007;180:57-67. https://doi.org/10.1016/j.ejor.2006.02.048
- Pizarroso J, Alfaya D, Portela J, Munoz A. Metric tools for sensitivity analysis with applications to neural networks. arXiv. Forthcoming 2023.
- Nourani V, Fard MS. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv Eng Softw 2012;47:127-46. https://doi.org/10.1016/j.advengsoft.2011.12.014
- Cao M, Alkayem NF, Pan L, Novak D. Advanced methods in neural networks-based sensitivity analysis with their applications in civil engineering. In: Rosa JLG, editor. Artificial Neural Networks. Rijeka: IntechOpen; 2016. p. 335-53.
- Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 2005;34:113-27. https://doi.org/10.1016/j.artmed.2004.07.002
- Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Modell 2003;160:249-64. https://doi.org/10.1016/S0304-3800(02)00257-0
- Borzouei S, Soltanian AR. Application of an artificial neural network model for diagnosing type 2 diabetes mellitus and determining the relative importance of risk factors. Epidemiol Health 2018;40:e2018007.
- Agliata A, Giordano D, Bardozzo F, Bottiglieri S, Facchiano A, Tagliaferri R. Machine learning as a support for the diagnosis of type 2 diabetes. Int J Mol Sci 2023;24:6775.
- Liu Q, Zhou Q, He Y, Zou J, Guo Y, Yan Y. Predicting the 2-year risk of progression from prediabetes to diabetes using machine learning among Chinese elderly adults. J Pers Med 2022;12:1055.
- World Health Organization. Classification of diabetes mellitus. Geneva: World Health Organization; 2019.
- Olaniyi EO, Adnan K. Onset diabetes diagnosis using artificial neural network. Int J Sci Eng Res 2014;5:754-9.
- Ebrahim OA, Derbew G. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021. Sci Rep 2023;13:7779.
- Niedbala G, Kurasiak-Popowska D, Piekutowska M, Wojciechowski T, Kwiatek M, Nawracala J. Application of artificial neural network sensitivity analysis to identify key determinants of harvesting date and yield of soybean (Glycine max [L.] merrill) cultivar augusta. Agriculture 2022;12:754.
- Jeczmionek E, Kowalski PA. Input reduction of convolutional neural networks with global sensitivity analysis as a data-centric approach. Neurocomputing 2022;506:196-205. https://doi.org/10.1016/j.neucom.2022.07.027
- Kowalski PA, Kusy M. Sensitivity analysis for probabilistic neural network structure reduction. IEEE Trans Neural Netw Learn Syst 2018;29:1919-32. https://doi.org/10.1109/TNNLS.2017.2688482
- Franceschini S, Tancioni L, Lorenzoni M, Mattei F, Scardi M. An ecologically constrained procedure for sensitivity analysis of artificial neural networks and other empirical models. PLoS One 2019;14:e0211445.
- Choi SK, Park CG. The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence. J Digit Converg 2021;19:257-69.
- Singla V, Singla S, Feizi S, Jacobs D. Low curvature activations reduce overfitting in adversarial training. Proceedings of the IEEE/CVF International Conference on Computer Vision; 2021 Oct 11-17; Montreal, Canada. Scarsdale (NY): Computer Vision Foundation; 2021. p. 16423-33.
- Guldogan E, Zeynep T, Ayca A, Colak C. Performance evaluation of different artificial neural network models in the classification of type 2 diabetes mellitus. J Cogn Syst 2020;5:23-32.
- Ryu KS, Lee SW, Batbaatar E, Lee JW, Choi KS, Cha HS. A deep learning model for estimation of patients with undiagnosed diabetes. Appl Sci 2020;10:421.
- Pizarroso J, Portela J, Munoz A. NeuralSens: sensitivity analysis of neural networks. J Stat Softw 2022;102:1-36. https://doi.org/10.18637/jss.v102.i07