• 제목/요약/키워드: Langmuir model

Search Result 534, Processing Time 0.025 seconds

Cu2+ ion reduction in wastewater over RDF-derived char

  • Lee, Hyung Won;Park, Rae-su;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Kim, Sang Chai;Chung, Jin Do;Choi, Won Geun;Park, Young-Kwon
    • Carbon letters
    • /
    • v.18
    • /
    • pp.49-55
    • /
    • 2016
  • Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.

Steam Activated Carbon Preparation Using HTFBR from Biomass and its Adsorption Characteristics

  • Asirvatham, J. Herbert;Gargieya, Nikhar;Paradkar, Manali Sunil;Prakash Kumar, B.G.;Lima Rose, Miranda
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.203-209
    • /
    • 2008
  • The objective of this work is to study the feasibility of the preparation of the activated carbon (AC) from coconut tree flowers using high temperature fluidized bed reactor (HTFBR). The activating agent used in this work is steam. The reactor was operated at various activation temperature (650, 700, 750, 800 and $850^{\circ}C$) and activation time (30, 60, 120 and 240 min) for the production of AC from coconut tree flowers. Effect of activation time and activation temperature on the quality of the AC preparation was observed. Prepared AC was characterized in-terms of iodine number, methylene blue number, methyl violet number, ethylene glycol mono ethyl ether (EGME) surface area and SEM photographs. The best quality of AC from coconut tree flowers (CFC) was obtained at an activation temperature and time of $850^{\circ}C$ and 1 hr restectively. The effectiveness of carbon prepared from coconut tree flowers in adsorbing crystal violet from aqueous solution has been studied as a function of agitation time, carbon dosage, and pH. The adsorption of crystal violet onto AC followed second order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity $q_m$ was 277.78 mg/g., equilibrium time was found to be 180 min. This adsorbent from coconut tree flowers was found to be effective for the removal of CV dye.

Study of COD Removal Efficiency from Synthetic Wastewater by Photocatalytic Process

  • Rojviroon, Orawan;Rojviroon, Thammasak;Sirivithayapakorn, Sanya
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.255-259
    • /
    • 2014
  • In this research, we compared the COD removal efficiencies of titanium dioxide ($TiO_2$) thin films coated on the surfaces of borosilicate glass that prepared by three different numbers of coating layer; i) 3 layers ii) 4 layers and iii) 5 layers by sol-gel method. All of the prepared $TiO_2$ thin films consisted of pure anatase crystalline structure with grain sizes in the range 20-250 nm. The calculated optical band gaps of the $TiO_2$ thin films were 3.24. The total apparent surface area per total weight of $TiO_2$ thin films were 4.74, 3.86 and $2.79m^2g^{-1}$ for 3, 4 and 5 layers coating, respectively. The kinetics of the photodegradation reactions of COD under UVA light source were described by the Langmuir-Hinshelwood (L-H) kinetic model. The specific rates of the photodegradation of $TiO_2$ thin films at 3 layers coating was $1.40{\times}10^{-4}min^{-1}mW^{-1}$, while for the 4 layers coating and the 5 layers coating were $1.50{\times}10^{-4}$ and $4.60{\times}10^{-4}min^{-1}mW^{-1}$, respectively. The photocatalytic performance of COD degradation was higher with smaller grain size, higher surface area and narrow optical band gaps. Moreover, the numbers of coating layer on substrate also have great influence for kinetic of COD removal.

Nickel Ion Adsorption Behavior of Ceriporia lacerata Isolated from Mine Tailings in Korea

  • Kim, HaeWon;Lim, Jeong-Muk;Oh, Sae-Gang;Kamala-Kannan, Seralathan;Cho, Min;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.22-31
    • /
    • 2015
  • In the present study, surface of laccase producing Ceriporia lacerata was modified using 4-bromobutyryl chloride and polyethylenimine. The modified biomass was freeze dried and utilized as a biosorbent for the removal of Ni(II) from aqueous solution. The physicochemical properties of the biosorbent were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. Batch experiments were carried out as a function of contact time (0-60 min), pH (2 to 8), adsorbent dosage (25-150 mg), and initial Ni(II) concentration (25-125 mg/L). The results indicate that surface modified biosorbent effectively adsorbed (9.5 mg/0.1 g biomass) Ni(II) present in the solution. The equilibrium adsorption data were modeled with different kinetic and isotherm models. The Ni(II) adsorption followed pseudo-first-order kinetics (R2 = 0.998) and Langmuir isotherm (R2 = 0.994) model. Hydroxyl and carbonyl functional groups present in biomass play a major role in the adsorption of Ni(II). The adsorbed Ni(II) from the biosorbent was successfully desorbed (85%) by 1M HCl. The results of the study indicate that the surface modified C. lacerate biomass could be used for the treatment of Ni(II) contaminated ground waters.

Biosorption of Pb and Cr by using Sargassum sagamianum (비틀대모자반, Sargassum sagamianum을 이용한 Pb 및 Cr 생체흡착 및 회수)

  • SUH Kuen-Hack;AHN Kab-Hwan;LEE Hack-Sung;LEE Hwae-Geon;CHO Jin-Koo;HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.4
    • /
    • pp.399-403
    • /
    • 1999
  • Biosorption of Pb and Cr to Sargassum sagamianum was evaluated in the various conditions. An adsorption equilibrium was reached in about 15 min. for Pb and Cr. The uptake capacity was 224.5 mg Pb/g biomass and 77.5 mg Cr/g biomass, respectively. The adsorption parameters for Pb and Cr were determined according to Langmuir and Freundlich model. Biosorption of Pb and Cr was increased with an increase in pH value. Pb and Cr adsorbed by S. sagamianum could be recovered by desorption process with 0.1M HCl, 0.1M $HNO_3$ and 0.1M EDTA and the efficiency of Pb desorption was above $90\%$, whereas the efficiency of Cr desorption was below $51\%$.

  • PDF

Magnetite for phosphorus removal in low concentration phosphorus-contained water body

  • Xiang, Heng;Liu, Chaoxiang;Pan, Ruiling;Han, Yun;Cao, Jing
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.163-172
    • /
    • 2014
  • Magnetite was chosen as a typical adsorbent to study its phosphate adsorption capacity in water body with low concentration of phosphorus (below $2mg\;PL^{-1}$). Magnetite was collected from Luoyang City, Henan Province, China. In this research, three factors have been studied to describe the adsorption of phosphate on magnetite, which was solution concentration (concentration ranging from 0.1 to $2.5mg\;PL^{-1}$), suspension pH (1 to 13) and temperature (ranging from $10^{\circ}C$ to $40^{\circ}C$). In addition, the modified samples had been characterized with XRD and FE-SEM image. The results show that iron ions contains in magnetite were the main factors of phosphorus removal. The behavior of phosphorus adsorption to substrates could be fitted to both Langmuir and Freundlich isothermal adsorption equations in the low concentration phosphorus water. The theoretical saturated adsorption quantity of magnetite is 0.158 mg/g. pH has great influence on the phosphorus removal of magnetite ore by adsorption. And pH of 3 can receive the best results. While temperature has little effect on it. Magnetite was greatly effective for phosphorus removal in the column experiments, which is a more practical reflection of phosphorous removal combing the adsorption isotherm model and the breakthrough curves. According to the analysis of heavy metals release, the release of heavy metals was very low, they didn't produce the secondary pollution. The mechanism of uptake phosphate is in virtue of chemisorption between phosphate and ferric ion released by magnetite oxidation. The combined investigation of the magnetite showed that it was better substrate for water body with low concentration of phosphorus.

The application of multifunctional metal oxide for wastewater treatment: Adsorption and disinfection (다기능 금속산화물의 하수처리 적용-흡착 및 살균)

  • Kim, Heegon;Park, Duckshin;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.251-258
    • /
    • 2019
  • The physical treatment such as chemical precipitation or adsorption was usually added after biological treatment in wastewater treatment process since it was enforced to reduce the concentration of phosphate for wastewater effluent to 0.2 mg/L as P which was well known as one of main nutrient causing eutrophication in waterbody. Therefore, the new material functioned for both adsorption and disinfection was prepared with Fe and Cu, and $TiO_2$, respectively, by changing the ratio of concentration referred to tri-metal (TM). According to SEM-EDS, $TiO_2$ was 30~40% composition for any TM regardless of any synthesis condition. However, the ratio of composition for Fe and Cu was dependent on the initial Fe and Cu concentration, respectively. The removal efficiency of phosphate was obtained to 15% at low initial concentration and the maximum uptake (Q) was calculated to ~11 mg/g through Langmuir isotherm model using TM1 which was synthesized at 1000 mg/L, 1000 mg/L, and 2 g (10 g/L) for $Fe(NO_3)_3$, $Cu(NO_3)_2$, $TiO_2$, respectively. In disinfection test, the efficiency of virus removal using TM was increased with increase of dosage of TM and can be reached 98% at 0.2 g.

Adsorption of Zinc Ion in Synthetic Wastewater by Ethylenediaminetetraacetic Acid-Modified Bentonite (에틸렌다이아민테트라아세트산으로 개질된 벤토나이트를 이용한 합성폐수 내 아연 이온 흡착)

  • Jeong, Myung-Hwa;Kwon, Dong-Hyun;Lim, Yeon-Ju;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Ethylenediaminetetraacetic acid-modified bentonite (EMB) was used for adsorption of zinc ion (Zn) from aqueous solution, compared with unmodified bentonite (UB). Parameters such as dose (0.750 ~ 3.125 g/L), mixing intensity (10 ~ 150 rpm), contact time (0.17 ~ 30 min), pH (2 ~ 7), and temperature (298 ~ 338 K), were studied. Zn removal efficiency for EMB was 20 ~ 30 % higher, than that for UB, in all experiments. Thermodynamic studies demonstrated that adsorption process was spontaneous with Gibb's free energy (${\Delta}G$) values, ranging between -5.211 and -7.175 kJ/mol for EMB, and -0.984 and -2.059 kJ/mol for UB, and endothermic with enthalpy (${\Delta}H$) value of 9.418 kJ/mol for EMB and 7.022 kJ/mol for UB. Adsorption kinetics was found to follow the pseudo-second order kinetics model, and its rate constant was 3.41 for EMB and $2.00g/mg{\cdot}min$ for UB. Adsorption equilibrium data for EMB were best represented by the Langmuir adsorption isotherm, and calculated maximum adsorption capacity was 2.768 mg/g. It was found that the best conditions for Zn removal of EMB within the range of operation used, were 3.125 g/L dose, 90 rpm intensity, 10 min contact time, pH 4, and 338 K. Therefore, EMB has good potential for adsorption of Zn.

A New Approach on Adsorption and Transport of Cesium in Organic Matter-rich Soil and Groundwater Environments Changed by Wildfires (산불로 인해 변화하는 토양지하수 환경에서의 세슘 흡착 및 거동에 대한 새로운 고찰)

  • Bae, Hyojin;Choung, Sungwook;Jeong, Jina
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This study was conducted to investigate the effect of soil and groundwater environment changed by wildfire on cesium adsorption and transport. Soil samples (A, B) used in the study were collected from Gangwon-do, where wildfires frequently occur, and the adsorption and transport of cesium in the samples were evaluated through batch and column experiments. As a result of the batch adsorption experiments with various concentrations of cesium (CW ≈ 10~105 ㎍/L), the adsorption distribution coefficient (Kd) of cesium was higher in sample A for all observed concentrations. It means that the adsorption capacity of sample A was higher to that of sample B, which was also confirmed through the parameters of adsorption isotherm models (Freundlich and Langmuir model) applied to the experimental results. The fixed bed column experiments simulated the actual soil and groundwater environment, and they showed that cesium was retarded approximately 43 and 27 times than a nonreactive tracer in sample A and B, respectively. In particular, a significant retardation occurred in the sample A. Although sample A contains little clays, total organic carbon (TOC) contents were 3 times greater than sample B. These results imply that particulate organic matter caused by wildfire might influence the adsorption and transport of cesium in the organic matter-rich soil and groundwater environment.

Analysis of Si Etch Uniformity of Very High Frequency Driven - Capacitively Coupled Ar/SF6 Plasmas (VHF-CCP 설비에서 Ar/SF6 플라즈마 분포가 Si 식각 균일도에 미치는 영향 분석)

  • Lim, Seongjae;Lee, Ingyu;Lee, Haneul;Son, Sung Hyun;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.72-77
    • /
    • 2021
  • The radial distribution of etch rate was analyzed using the ion energy flux model in VHF-CCP. In order to exclude the effects of polymer passivation and F radical depletion on the etching. The experiment was performed in Ar/SF6 plasma with an SF6 molar ratio of 80% of operating pressure 10 and 20 mTorr. The radial distribution of Ar/SF6 plasma was diagnosed with RF compensated Langmuir Probe(cLP) and Retarding Field Energy Analyzer(RFEA). The radial distribution of ion energy flux was calculated with Bohm current times the sheath voltage which is determined by the potential difference between the plasma space potential (measured by cLP) and the surface floating potential (by RFEA). To analyze the etch rate uniformity, Si coupon samples were etched under the same condition. The ion energy flux and the etch rate show a close correlation of more than 0.94 of R2 value. It means that the etch rate distribution is explained by the ion energy flux.