• Title/Summary/Keyword: Langmuir adsorption model

Search Result 413, Processing Time 0.031 seconds

Preparation of PSf/D2EHPA/CNTs Beads Immobilized with Carbon Nanotubes and Di-(2-ethylhexyl)-phosphoric acid on Polysulfone and Removal Characteristics of Sr(II) (Polysulfone에 Di-(2-ethylhexyl)-phosphoric acid와 Carbon Nanotubes를 고정화한 PSf/D2EHPA/CNTs 비드의 제조와 Sr(II)의 제거 특성)

  • Lee, Min-Gyu;Yun, Jong-Won;Suh, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.854-860
    • /
    • 2017
  • PSf/D2EHPA/CNTs beads were prepared by immobilizing extractant di-(2-ethylhexyl)- phosphoric acid (D2EHPA) and adsorbent carbon nanotubes (CNTs) on polysulfone (PSf), and the adsorption characteristics of Sr(II) on the beads were studied. The morphological characteristics of the prepared PSf/D2EHPA/CNTs beads were observed by scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), and Fourier transform infrared spectrometer (FTIR). The equilibrium time for the removal of Sr(II) by PSf/D2EHPA/CNTs beads was 60 min. The experimental kinetic data followed pseudo-second-order model more than pseudo-first-order kinetics model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was 4.75 mg/g. The removal efficiencies of Sr (II) by PSf/D2EHPA/CNTs beads were improved 2.5 times by adding the adsorbent CNTs more than by using only the extractant D2EHPA.

Chromium(VI) Removal from Aqueous Solution using Acrylic Ion Exchange Fiber (아크릴계 이온교환섬유를 이용한 수중 크롬(VI) 제거)

  • Nam, Aram;Park, Jeong-Ann;Do, Taegu;Choi, Jae-Woo;Choi, Ungsu;Kim, Kyung Nam;Yun, Seong-Taek;Lee, Sanghyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.112-117
    • /
    • 2017
  • Ion exchange fiber, PADD was synthesized by the reaction between PAN based acrylic fiber and DETA with $AlCl_3{\cdot}6H_2O$, and was analyzed by FT-IR and SEM to investigate its characteristics. The experimental results of Cr(VI) removal by PADD were better fitted with Langmuir adsorption isotherm, and the maximum uptake value ($Q_{max}$) was calculated to be 6.93 mmol/g. The kinetic data can be well described by Lagergen pseudo-second order rate model. The Cr(VI) adsorption capacity of PADD was 4.11 mmol/g at pH 2, which shows the effect of pH changes on the removal of Cr(VI). The adsorption selectivity of Cr(VI) was higher than phosphate and As(V). Total ion exchange capacity of PADD was 4.70 mmol/g, which was measured by acid-base back titration.

Removal of Basic Dye from Aqueous Solution using Coal-based Granular Activated Carbon (석탄계 입상활성탄을 이용한 수용액으로부터 염기성 염료의 제거)

  • Choi, Han Ah;Park, Ha Neul;Moon, Hye Woon;Kim, Eun Bin;Jang, Yeon Woo;Won, Sung Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.188-195
    • /
    • 2017
  • This research studied the adsorption of basic dye, Basic Blue 3 (BB3) by using coal-based granular activated carbon (C-GAC) from aqueous solution. All experiments were performed in batch processes, and adsorption parameters such as C-GAC dosage, contact time, initial dye concentration and temperature were evaluated. The removal efficiency of BB3 was increased with increasing the C-GAC dosage and 100% of initial concentration, $50mg\;L^{-1}$ was removed above 0.2 g of C-GAC. Also, the time to reach equilibrium depended on the initial dye concentration. According to the Langmuir model, the maximum uptakes of C-GAC were calculated to be 66.45, 84.97 and $87.19mg\;g^{-1}$ at 25, 35 and $45^{\circ}C$, respectively. In addition, thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were investigated.

Biosorption and Desorption of Pb by Using Sargassum sagamianum (해조류, Sargassum sagamianum을 이용한 Pb 흡착 및 탈착)

  • Seo, Geun-Hak;An, Gap-Hwan;Gong, In-Su
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.611-615
    • /
    • 1999
  • Biosorption of Pb was evaluated for Sargassum sagamianum. An adsorption equilibrium was reached in about 1 hr. The uptake capacity of Pb was 224.5 mg Pb/G biomass. The adsorption parameters for Pb were determined according to Langmuir and Frueundlich model. With increasing pH, more negative sites are becoming available for adsorption of Pb. When Ca and Mg concentration increases in Pb solution, Pb was selectively adsorbed. The Pb adsorbed by S. sagamianu could be desorbed by desorption process and the efficiency from 0.1M HCl, 0.1M HNO$_3$and 0.1M EDTA was above 95%. S. Sagamianum was reused 6 times and the total uptake was 736.8 mg Pb/g biomass.

  • PDF

Equilibrium and kinetic studies of an electro-assisted lithium recovery system using lithium manganese oxide adsorbent material

  • Lee, Dong-Hee;Ryu, Taegong;Shin, Junho;Kim, Young Ho
    • Carbon letters
    • /
    • v.28
    • /
    • pp.87-95
    • /
    • 2018
  • This study examined the influence of operating parameters on the electrosorptive recovery system of lithium ions from aqueous solutions using a spinel-type lithium manganese oxide adsorbent electrode and investigated the electrosorption kinetics and isotherms. The results revealed that the electrosorption data of lithium ions from the lithium containing aqueous solution were well-fitted to the Langmuir isotherm at electrical potentials lower than -0.4 V and to the Freundlich isotherm at electrical potentials higher than -0.4 V. This result may due to the formation of a thicker electrical double layer on the surface of the electrode at higher electrical potentials. The results showed that the electrosorption reached equilibrium within 200 min under an electrical potential of -1.0 V, and the pseudo-second-order kinetic model was correlated with the experimental data. Moreover, the adsorption of lithium ions was dependent on pH and temperature, and the results indicate that higher pH values and lower temperatures are more suitable for the electrosorptive adsorption of lithium ions from aqueous solutions. Thermodynamic results showed that the calculated activation energy of $22.61kJ\;mol^{-1}$ during the electrosorption of lithium ions onto the adsorbent electrode was primarily controlled by a physical adsorption process. The recovery of adsorbed lithium ions from the adsorbent electrode reached the desorption equilibrium within 200 min under reverse electrical potential of 3.5 V.

Column filled with Fe-GAC and GAC to remove both As(V) and Fe(III) (비소와 철 동시제거를 위한 Fe-GAC와 GAC로 충진된 컬럼)

  • Lee, Yong-Soo;Do, Si-Hyun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.87-97
    • /
    • 2016
  • First of all, Fe or/and Mn immobilized granular activated carbons (Fe-GAC, Mn-GAC, (Fe, Mn)-GAC) were synthesized and tested to remove arsenate (As(V)). The results in batch test indicated that Fe-GAC removed As(V) effectively, even though the surface area of Fe-GAC was reduced largely. Moreover, adsorption isotherm test indicated that the experimental data fit well with Langmuir model and the maximum adsorption capacity ($q_{max}$) of Fe-GAC for As(V) was $3.49mg\;g^{-1}$, which was higher than GAC ($2.24mg\;g^{-1}$). In column test, the simulated water, which consisted of As(V), Fe(III), Mn(II) and Ca(II) in tap water, was used. Fe-GAC column with 1 hr of pre-washing time treated As(V) effectively while GAC column removed Fe(III) better than Fe-GAC column. Moreover, the increasing pre-washing time from 1 to 9 hour in Fe-GAC column enhanced Fe(III) removal with little negative impact of As(V) removal. Mostly, the column filled with Fe-GAC and GAC (i.e. the mass ratio of Fe-GAC:GAC = 2:8) showed the higher treatability of both As(V) and Fe(III), even it operated with 1 hr pre-washing time.

Cu2+ ion reduction in wastewater over RDF-derived char

  • Lee, Hyung Won;Park, Rae-su;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Kim, Sang Chai;Chung, Jin Do;Choi, Won Geun;Park, Young-Kwon
    • Carbon letters
    • /
    • v.18
    • /
    • pp.49-55
    • /
    • 2016
  • Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.

A Preliminary Study on Evaluation of TimeDependent Radionuclide Removal Performance Using Artificial Intelligence for Biological Adsorbents

  • Janghee Lee;Seungsoo Jang;Min-Jae Lee;Woo-Sung Cho;Joo Yeon Kim;Sangsoo Han;Sung Gyun Shin;Sun Young Lee;Dae Hyuk Jang;Miyong Yun;Song Hyun Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.175-183
    • /
    • 2023
  • Background: Recently, biological adsorbents have been developed for removing radionuclides from radioactive liquid waste due to their high selectivity, eco-friendliness, and renewability. However, since they can be damaged by radiation in radioactive waste, a method for estimating the bio-adsorbent performance as a time should consider the radiation damages in terms of their renewability. This paper aims to develop a simulation method that applies a deep learning technique to rapidly and accurately estimate the adsorption performance of bio-adsorbents when inserted into liquid radioactive waste. Materials and Methods: A model that describes various interactions between a bio-adsorbent and liquid has been constructed using numerical methods to estimate the adsorption capacity of the bio-adsorbent. To generate datasets for machine learning, Monte Carlo N-Particle (MCNP) simulations were conducted while considering radioactive concentrations in the adsorbent column. Results and Discussion: Compared with the result of the conventional method, the proposed method indicates that the accuracy is in good agreement, within 0.99% and 0.06% for the R2 score and mean absolute percentage error, respectively. Furthermore, the estimation speed is improved by over 30 times. Conclusion: Note that an artificial neural network can rapidly and accurately estimate the survival rate of a bio-adsorbent from radiation ionization compared with the MCNP simulation and can determine if the bio-adsorbents are reusable.

Enhancement of phosphate removal using stabilized Fe-Mn particle (Fe-Mn 입자의 안정화를 통한 인산염 효율 향상)

  • Seoyeon Kang;Jeongwoo Shin;Byugnryul An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.375-382
    • /
    • 2023
  • The binary oxide adsorbent using Fe and Mn (Fe-Mn) has been prepared by precipitation method to enhance the removal of phosphate. Different amounts of chitosan, a natural organic polymer, were used during preparation of Fe-Mn as a stabilizer to protect an aggregation of Fe-Mn particles. The optimal amount of chitosan has been determined considering the separation of the Fe-Mn particles by gravity from solution and highest removal efficiency of phosphate (Fe-Mn10). The application of Fe-Mn10 increased removal efficiency at least 15% compared to bare Fe-Mn. According to the Langmuir isotherm model, the maximum uptake (qm) and affinity coefficient (b) were calculated to be 184 and 240 mg/g, and 4.28 and 7.30 L/mg for Fe-Mn and Fe-Mn10, respectively, indicating 30% and 70% increase. The effect of pH showed that the removal efficiency of phosphate was decrease with increase of pH regardless of type of adsorbent. The enhanced removal efficiency for Fe-Mn10 was maintained in entire range of pH. In the kinetics, both adsorbents obtained 70% removal efficiency within 5 min and 90% removal efficiency was achieved at 1 h. Pseudo second order (PSO) kinetic model showed higher correlation of determination (R2), suggesting chemisorption was the primary phosphate adsorption for both Fe-Mn and Fe-Mn10.

A Study on the Adsorptive Removal of Heavy Metals Using Inflated Vermiculites (팽창질석을 이용한 중금속 흡착제거에 관한 연구)

  • Lee, Junki;Koh, Taehoon;Kim, Sukyung;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.61-68
    • /
    • 2009
  • The main objective of this study was to examine the removal of heavy metals from water by inflated vermiculites. The component of vermiculites was analyzed by XRF, and the concentration of metal ion was measured by ICP-AES. Serial batch kinetic tests and batch sorption tests were conducted to determine the removal characteristics for heavy metals in aqueous solutions. As a result, solution pH values of tests with the inflated vermiculites generally increased and then stabilized. Equilibrium pHs were generally established within 5 hrs. In addition, removal rates of inflated vermiculites were tested at the initial concentration of 3 mg/L. As a result, at equilibrium concentration, except for chromium (36.23%), Most of the heavy metals were effectively removed (96.08~98.54%). Finally, sorption data were correlated with both Langmuir and Freundlich isotherms. The Qmax obtained from Langmuir isotherm were determined to Pb $725.4mg\;kg^{-1}$, Cd $568.8mg\;kg^{-1}$, Zn $540.2mg\;kg^{-1}$, Cu $457.2mg\;kg^{-1}$ Cr $0.9mg\;kg^{-1}$ respectively. The results of the study indicate that inflated vermiculites can be properly used as an adsorbent for various heavy metals because of its outstanding removal rate.

  • PDF