DOI QR코드

DOI QR Code

Chromium(VI) Removal from Aqueous Solution using Acrylic Ion Exchange Fiber

아크릴계 이온교환섬유를 이용한 수중 크롬(VI) 제거

  • Nam, Aram (KIST Center for Water Resource Cycle Research) ;
  • Park, Jeong-Ann (KIST Center for Water Resource Cycle Research) ;
  • Do, Taegu (KIST Center for Urban Energy System Research) ;
  • Choi, Jae-Woo (KIST Center for Water Resource Cycle Research) ;
  • Choi, Ungsu (KIST Center for Urban Energy System Research) ;
  • Kim, Kyung Nam (Graduate school of energy and environment (Green School), Korea University) ;
  • Yun, Seong-Taek (Graduate school of energy and environment (Green School), Korea University) ;
  • Lee, Sanghyup (KIST Center for Water Resource Cycle Research)
  • 남아름 (한국과학기술연구원 물자원순환연구단) ;
  • 박정안 (한국과학기술연구원 물자원순환연구단) ;
  • 도태구 (한국과학기술연구원 도시에너지연구단) ;
  • 최재우 (한국과학기술연구원 물자원순환연구단) ;
  • 최웅수 (한국과학기술연구원 도시에너지연구단) ;
  • 김경남 (그린스쿨에너지환경정책기술대학원) ;
  • 윤성택 (그린스쿨에너지환경정책기술대학원) ;
  • 이상협 (한국과학기술연구원 물자원순환연구단)
  • Received : 2016.09.30
  • Accepted : 2017.02.27
  • Published : 2017.03.31

Abstract

Ion exchange fiber, PADD was synthesized by the reaction between PAN based acrylic fiber and DETA with $AlCl_3{\cdot}6H_2O$, and was analyzed by FT-IR and SEM to investigate its characteristics. The experimental results of Cr(VI) removal by PADD were better fitted with Langmuir adsorption isotherm, and the maximum uptake value ($Q_{max}$) was calculated to be 6.93 mmol/g. The kinetic data can be well described by Lagergen pseudo-second order rate model. The Cr(VI) adsorption capacity of PADD was 4.11 mmol/g at pH 2, which shows the effect of pH changes on the removal of Cr(VI). The adsorption selectivity of Cr(VI) was higher than phosphate and As(V). Total ion exchange capacity of PADD was 4.70 mmol/g, which was measured by acid-base back titration.

PAN 기반 아크릴계 섬유와 DETA 및 $AlCl_3{\cdot}6H_2O$를 반응시켜 아민기($-NH_2$)를 가진 이온교환섬유 PADD를 합성하였다. 개발된 섬유상 소재는 FT-IR과 SEM을 이용하여 그 특성을 확인해 보았다. 회분식 실험으로 수행된 PADD를 이용한 크롬제거 실험 결과는 Langmuir 등온흡착모델에 잘 적용되었으며, 이때 계산된 이론적 최대흡착능 ($Q_{max}$)은 6.93 mmol/g으로 나타났다. 한편 동적흡착실험은 Lagergren 유사이차속도모델에 잘 부합되었다. PADD의 크롬 흡착능은 pH 2에서 가장 높은 값인 4.11 mmol/g을 나타내었고 pH 변화에 많은 영향을 받는 것으로 확인되었다. 또한, 인산과 비소(V)에 대한 공존이온 실험을 통해 PADD가 크롬에 대한 높은 선택성을 갖고 있음을 확인할 수 있었다. 산-염기 역적정으로 구한 PADD의 총이온교환능 (4.70 mmol/g)을 통해 소재의 선택적 제거 가능성을 검증하였다.

Keywords

References

  1. Gang, Q., Michael, J. M., Nicole, K. B., Chad, S. and Leighton, F., "Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: A pilot-scale study," Environ. Sci. Technol., 39(16), 6321-6327(2005). https://doi.org/10.1021/es050486p
  2. Margaret, P. S., "Chromium: Environmental, Medical and Materials Studies," Nova Science Publishers, Inc.(2011).
  3. Dinesh, M. and Charles, U. P. Jr., "Review: Activated Carbons and Low Cost Adsorbents for Remediation of Triand Hexavalent Chromium from Water," J. Hazard. Mater., B137, 762-811(2006).
  4. Preetha, B. and Viruthagiri, T., "Batch and continuous biosorption of chromium (VI) by Rhizopus arrhizus," Sep. Purif. Technol., 57, 126-133(2007). https://doi.org/10.1016/j.seppur.2007.03.015
  5. Bhaumik, M., Setshedi, K., Maity, A. and Onyango, M. S., "Chromium (VI) removal from water using fixed bed column of polypyrrole/$Fe_3O_4$ nanocomposite," Sep. Purif. Technol., 110, 11-19(2013). https://doi.org/10.1016/j.seppur.2013.02.037
  6. Tonni Agustino Kurniawan, Removal of Toxic Cr(VI) from Wastewater, Nova Science Publishers, Inc.(2012).
  7. Amalraj, A., Kalai, S. M., Rajeswari, A., Jackcina, S., Christy, E. and Pius, A., "Efficient removal of toxic hexavalent chromium from aqueous solution using threonine doped polypyrrole nanocomposite," J. Water Process Eng., 13, 88-99(2016). https://doi.org/10.1016/j.jwpe.2016.08.013
  8. Mojdeh, O., Mohamed, K. A., Wan, A. W. D. and Saeid, B., "Removal of Haxavalent Chromium-contaminated Water and Wastewater: A Review," Water Air Soil Pollut., 200, 59-77(2009). https://doi.org/10.1007/s11270-008-9893-7
  9. Rengaraj, S., Yeon, K. H. and Moon, S. H., "Removal of Chromium from Water and Wastewater by Ion Exchange Resins," J. Hazard. Mater., B87, 273-287(2001).
  10. Fenglian and Wang, Q., "Removal of Heavy Metal Ion from Wastewaters: A Review," J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  11. Zhang, B. W., Fischer, K., Bieniek, D. and Kettrup, A., "Synthesis of Carboxyl Group Containing Hydrazine-modified Polyacrylonitrile Fibres and Application for the Removal of Heavy Metals," React. Poly., 24, 49-58(1994). https://doi.org/10.1016/0923-1137(94)90136-8
  12. Yahorava, V., Kotze, M. and Auerswald, D., "Evaluation of Different Adsorbents for Copper Removal from Cobalt Electrolyte," The Southern African Institute of Mining and Metallurgy, pp. 283-297(2013).
  13. Jassal, M., Bhowmick, S., Sengupta, S., Patra, P. K. and Walker, D. I., "Hydrolyzed Poly(acrylonitrile) Electrospun Ion-Exchange Fibers," Environ. Eng. Sci., 31(6), 288-299 (2014). https://doi.org/10.1089/ees.2013.0436
  14. Wang, W., Li, M. and Zeng, Q., "Column Adsorption of Chromium(VI) by Strong Alkaline Anion-Exchange Fiber," J. Appl. Poly. Sci., 126, 1733-1738(2012). https://doi.org/10.1002/app.36634
  15. Huang, J., Zhang, X., Bai, L. and Yuan, S., "Polyphenylene Sulfide Based Anion Exchange Fiber: Synthesis, Characterization and Adsorption of Cr(VI)," J. Environ. Sci., 24(8), 1433-1438 (2012). https://doi.org/10.1016/S1001-0742(11)60948-0
  16. Inamuddin and Mohammad, L., "Ion Exchange Technology I: Theory and Materials," Springer(2012).
  17. Ko, Y. G., Choi, U. S., Kim, T. Y., Ahn, D. J. and Chun, Y. J., "FT-IR and Isotherm Study on Anion Adsorption onto Novel Chelating Fibers," Macromol. Rapid Commun., 23, 535-539(2002). https://doi.org/10.1002/1521-3927(20020601)23:9<535::AID-MARC535>3.0.CO;2-S

Cited by

  1. Effects of Exposure to Hexavalent Chromium on Hematological Parameters and Plasma Components in Flatfish, Paralichthys olivaceus vol.36, pp.2, 2018, https://doi.org/10.11626/KJEB.2018.36.2.124