• Title/Summary/Keyword: Langmuir Adsorption

Search Result 754, Processing Time 0.03 seconds

Basic Studies for the Development of the $NO_2$ Gas Sensor Using Functional Organic Ultrathin Film (기능성 유기 초박막을 이용한 $NO_2$ 가스센서 개발을 위한 기초 연구)

  • Sohn, B.C.;Rim, B.O.;Kim, Y.I.;Sohn, T.W.;Shin, D.M.;Ju, J.B.;Chung, G.Y.;Kim, Y.K.;Kang, W.H.;Lee, B.H.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.125-131
    • /
    • 1995
  • Ultra thin films of Tetra-3-hexadecylsulphamoylcopperphthalocyanine(HDSM-CuPc) were formed on various substrates by Langmuir-Blodgett method, where HDSM-CuPc was synthesized by attaching long-chain alkylamine(hexa-decylamine) to CuPc. The reaction product was identified with FT-IR, UV-visible absorption spectroscopies, elemental analysis and thin layer chromatography. The formation of Ultrathin Langmuir-Blodgett(LB) films of HDSM-CuPc was confirmed by FT-IR and UV-visible spectroscopies. A quartz piezoelectric crystal coated with LB films of HDSM-CuPc was examined as a gas sensor for $N0_2$ gas. HDSM-CuPc LB films were transferred to a quartz crystal microbalance(QCM) in the form of Z-type multilayers. Response characteristics of film-coated QCM to $NO_2$ gas concentrations over a range of $100{\sim}600ppm$ have been tested with a thickness of $5{\sim}20$ layers of HDSM-CuPc. Changes in frequency by adsorption of $NO_2$ were increased With the number of LB layers and $NO_2$ concentration, but the response time was slow.

Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor (충진층 반응기에서 고정화 cellulase에 의한 셀룰로스 가수 분해)

  • Kang, Byung Chul;Lee, Jong Baek
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1365-1370
    • /
    • 2013
  • Immobilized cellulase on weak ion exchange resin showed a typical Langmuir adsorption isotherm. Immobilized cellulase had better stability with respect to pH and temperature than free cellulase. Kinetics of thermal inactivation on free and immobilized cellulase followed first order rate, and immobilized cellulase had a longer half-life than free cellulase. The initial rate method was used to characterize the kinetic parameters of free and immobilized enzyme. The Michaelis-Menten constant $K_m$ was higher for the immobilized enzyme than it was for the free enzyme. The effect of the recirculation rate on cellulose degradation was studied in a recycling packed-bed reactor. In a continuous packed-bed reactor, the increasing flow rate of cellulose decreased the conversion efficiency of cellulose at different input lactose concentrations. Continuous operation for five days was conducted to investigate the stability of long term operation. The retained activity of the immobilized enzymes was 48% after seven days of operation.

Adsorption characteristics of Pb by various particle sizes of microplastics in aqueous solution (수용액에서 입자크기에 따른 미세플라스틱의 Pb 흡착특성)

  • Taejung Ha;Minjune Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.149-149
    • /
    • 2023
  • 미세플라스틱은 입자크기가 5 mm 이하인 플라스틱으로 정의되며, 수계로 유입된 미세플라스틱은 내분비계 교란물질로 작용하여 생태계에 환경독성을 유발하고 오염물질을 흡착·운반할 수 있는 독성 물질의 매개체로서 미세플라스틱의 위해성에 대한 우려가 증가하고 있다. 본 연구는 수용액에서 다양한 미세플라스틱의 납(Pb) 흡착특성을 평가하고 미세플라스틱의 비표면적에 따른 흡착 효과를 비교하고자 하였다. 플라스틱 종류 중 HDPE (High-density Polyethylene)와 PVC (Polyvinyl Chloride)를 각각 세 가지 크기(Group 1: 2.5 mm - 1.0 mm, Group 2: 1.0 mm - 0.3 mm, Group 3: < 0.3 mm)로 제조하여 분류하였으며, 미세플라스틱 입자크기의 비표면적은 BET(Brunauer, Emmett, Teller)분석을 통하여 측정하였다. 담수환경 조성을 위해 pH 7로 조절한 Pb 용액의 농도(0, 0.5, 1, 5, 10, 30 mg/L)별 흡착실험을 수행하였으며 실험결과를 3가지 흡착등온식(Langmuir, Freundlich, Sips 모델)을 사용하여 미세플라스틱에서 Pb 흡착 거동을 나타내었다. BET 분석 측정결과, PVC의 경우 Group 3 > Group 2 > Group 1 순으로 PVC의 입자크기가 작을수록 비표면적이 크게 나타났으며, HDPE 비표면적 또한 비슷한 경향을 보였다. HDPE와 PVC에서 Pb의 흡착은 Langmuir 모델(R2 > 0.97)과 Freundlich 모델(R2 > 0.82)보다 Sips 모델(R2 > 0.98)이 흡착 거동을 설명하기에 가장 적합하였다. 최대흡착능(Qm) 상수는 입자크기가 작아질수록 흡착능이 높아지는 추세를 보였으며, 흡착세기(KF)와 흡착강도(n-1)는 각 플라스틱의 Group 3(HDPE KF = 0.028, PVC KF = 0.032; HDPE n-1 = 0.225, PVC n-1 = 0.547)에서 가장 높게 나타났다. 본 연구를 통해 HDPE와 PVC에서 Pb의 흡착특성은 Sips모델로 설명이 가능했으며, 이에 따라 Pb 흡착과정에 복수의 흡착메커니즘이 작용하고 있음을 유추해볼 수 있었다. 미세플라스틱의 입자크기와 비표면적이 Pb 흡착량에 영향을 미치는 것을 알 수 있었으며, 미세플라스틱이 중금속을 흡착하여 생물체 내로 전이시킬 수 있는 매개체 역할의 가능성을 확인하였다.

  • PDF

Removal of Methylene Blue in Water Phase by Using Juniperus chinensis (향나무를 활용한 수중에서 메틸렌 블루의 제거)

  • Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.278-282
    • /
    • 2018
  • The development of treatment technologies for recycling waste woods generated from tree pruning is required in Gangwon province forest. In this study, according to adsorption experiments using three types (Larix kaemoferi, Juniperus chinensis, Pinus densiflora) of waste woods, Juniperus chinensis as a biosorbent showing an excellent removal ability was selected for the removal of methylene blue in an aqueous phase. When 0.4 g/100 mL of Juniperus chinensis was used to improve the removal efficiency of methylene blue for 4 h, each 100, 200 and 300 mg/L of methylene blue dissolved in the aqueous phase were removed to 98, 93, and 81%, respectively. The adsorption equilibrium data obtained by changing adsorbent concentrations was found to be more consistent with the Langmuir than the Freundlich equation. In addition, based on dynamic experiments by changing the methylene blue concentration, the biosorption kinetics equation was more suitable for a pseudo-second order model. In order to enhance the removal capability of highly concentrated methylene blue, 300 and 400 mg/L of methylene blue were operated for 4 h under 210 rpm of agitation velocity and removal efficiencies were 92 and 76%, respectively. Consequently, these experimental results can be effectively utilized as a new biosorption technology for economically treating methylene blue dissolved in an aqueous phase.

Fluoride Sorption Property of Lanthanum Hydroxide (란탄수산화물의 불소 흡착 특성)

  • Kim, Jung-Hwan;Park, Hyun-Ju;Jung, Kyung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.714-721
    • /
    • 2010
  • This research was undertaken to evaluate the feasibility of lanthanum hydroxide for fluoride removal from aqueous solutions. A batch sorption experiments were conducted to study the influence of various factors such as pH, contact time, initial fluoride concentration and temperature on the sorption of fluoride on lanthanum hydroxide. The optimum fluoride removal was observed in the $pH_{eq}{\leq}8.8$. Sorption equilibrium of fluoride on lanthanum hydroxide was better described by the Freundlish isotherm model than by the Langmuir isotherm model. The adsorption energy obtained from D-R model was 9.21 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The pseudo-second-order kinetic model described well the experimental kinetic data. Thermodynamic parameters such as ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ indicated that the nature of fluoride sorption is spontaneous and endothermic. The used lanthanum hydroxide could be regenerated by washing with NaOH solution. Also, the results applied to real ground water indicate that fluoride selectivity and removal capacity of lanthanum hydroxide were superior to those of PA anion-exchange resin.

Evaluation of Lanthanum(III)-Loess Composite as an Adsorbent for Phosphate Removal (인 제거를 위한 흡착제로서 란타늄-황토 복합체의 흡착특성)

  • Shin, Gwan-Woo;Choo, Yeon-Duk;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.143-148
    • /
    • 2011
  • In this work, a composite formed by adding loess with lanthanium ("La-Loess") was proposed for effective removal of phosphate found in confined water bodies such as lake and reservoir. It was found that the theoretical maximum amount of lanthanum that can be attached to Loess was 2.68 mg La/g Loess. The phosphate removal was enhanced as an added amount of La-Loess composite increased. Furthermore, there was a noticeable difference in phosphate removal between Loess and La-Loess as the latter required 1.5 to 10 times less Loess than the former. Both Isotherm equations of Freundlich and Langmuir can be used to explain the phosphate adsorption characteristics in using La-Loess composites. The phosphate removal was very effective in the pH range of 5~8, which means that the proposed adsorbent can be directly applied to natural water without adjusting pH. Also, the La-Loess composites were well settled within 30 min without causing turbidity in water. Consequently, the proposed La-Loess can be strongly recommended for phosphate removal in confined water bodies.

Adsorption of Heavy Metal onto the Extracellular Polysaccharide Produced by the Purple Nonsulfur Photosynthetic Bacteria Rhodopseudomonas sp. KH4 (홍색 비황 광합성 세균 Rhodopseudomonas sp. KH4의 Extracellular polysaccharide의 중금속 흡착)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Lee, Jong-Yeol;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.326-331
    • /
    • 2006
  • In the present study, we examined biosorption characteristics of heavy metals onto the extracellular polysaccharide (EPS) produced by the purple nonsulfur photosynthetic bacteria Rhodopseudomonas sp. KH4, which was isolated from a stream in Anyang, Kyonggi-Do. When Cd (100 mg/L) and Cu (100 mg/L) were added to EPS (1.0 g/L) in the optimal condition (Cd; pH 8, Cu; pH 5, $40^{\circ}C$), 84.2 mg/L of Cd and 70.0 mg/L of Cu were adsorbed within 30 min and 10 min, respectively. When 100 mg/L of Cd and Cu were present as mixture, 16.8 mg/L of Cd and 48.7 mg/L of Cu were adsorbed at $25^{\circ}C$, pH 5. The maximum adsorption capacity determined by fitting Langmuir isotherms model was suitable for describing the biosorption of Cd (76.9 mg/g) and Cu (67.1 mg/g) by EPS. The neutral monosaccharide in the EPS determined by GC consisted of arabinose (2.4%), glucose (7.1%) and mannose (90.5%).

Development of $O_2$ Purifier by Pressure Swing Adsorption Process (고순도 산소 생산을 위한 산소 정제 PSA 공정 개발)

  • Lee Chang-Ha;Jee Jeong-Geun;Lee Sang-Jin;Moon Heung-Man;Lee Sang-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.37-47
    • /
    • 2004
  • Pressure swing adsorption (PSA) process using CMS as an oxygen purifier was developed to produce high purity oxygen over $99\%$ with high productivity. The cyclic performances such as purity, recovery, and productivity of PSA process were compared experimentally and theoretically under the non-isothermal condition. A binary ($O_2$/Ar 95:5 vol.$\%$) and two kinds of ternary ($O_2/Ar/N_2$ 95:4:1 and 90:4:6 vol.$\%$) mixtures were used as feed gases. The developed process with the consecutive two blowdown steps produced the oxygen with $99.8\%$ purity and $56\%$ recovery from $95\%$ oxygen containing feed. However, in the feed with $90\%$ oxygen, the $O_2$ Purity was decreased up to $97.3\%$. In addition, because the cyclic performances of the suggested process was significantly affected by the diffusion rate, the non-isothermal model with the the modified LDF model was applied for the process simulation. The concentration-dependent rate parameter of the applied rate model was incorporated with the Langmuir isotherm.

  • PDF

Removal of Nitrate-Nitrogen in Pickling Acid Wastewater from Stainless Steel Industry Using Electrodialysis and Ion Exchange Resin (전기투석과 이온교환수지를 이용한 스테인레스 산업의 산세폐수 내 질산성 질소의 제거)

  • Yun, Young-Ki;Park, Yeon-Jin;Oh, Sang-Hwa;Shin, Won-Sik;Choi, Sang-June;Ryu, Seung-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.645-654
    • /
    • 2009
  • Lab-scale Electrodialysis(ED) system with different membranes combined with before or after pyroma process were carried out to remove nitrate from two pickling acid wastewater containing high concentrations of $NO_3\;^-$(${\approx}$150,000 mg/L) and F($({\approx}$ 160,000 mg/L) and some heavy metals(Fe, Ti, and Cr). The ED system before Pyroma process(Sample A) was not successful in $NO_3\;^-$ removal due to cation membrane fouling by the heavy metals, whereas, in the ED system after Pyroma process(Sample B), about 98% of nitrate was removed because of relatively low $NO_3\;^-$ concentration (about 30,000 mg/L) and no heavy metals. Mono-selective membranes(CIMS/ACS) in ED system have no selectivity for nitrate compared to divalent-selective membranes(CMX/AMX). The operation time for nitrate removal time decreased with increasing the applied voltage from 10V to 15V with no difference in the nitrate removal rate between both voltages. Nitrate adsorption of a strong-base anion exchange resin of $Cl\;^-$ type was also conducted. The Freundlich model($R^2$ > 0.996) was fitted better than Langmuir mode($R^2$ > 0.984) to the adsorption data. The maximum adsorption capacity ($Q^0$) was 492 mg/g for Sample A and 111 mg/g for Sample B due to the difference in initial nitrate concentrations between the two wastewater samples. In the regeneration of ion exchange resins, the nitrate removal rate in the pickling acid wastewater decreased as the adsorption step was repeated because certain amount of adsorbed $NO_3\;^-$ remained in the resins in spite of several desorption steps for regeneration. In conclusion, the optimum system configuration to treat pickling acid wastewater from stainless-steel industry is the multi-processes of the Pyroma-Electrodialysis-Ion exchange.

Biosorption of Heavy Metals by Biomass of Seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida (해조류(Laminaria species, Ecklonia stolonifera, Gelidium amansii, Undaria pinnatifida)에 의한 중금속 생물흡착 특성)

  • Choi, Ik-Won;Kim, Sung-Un;Seo, Dong-Cheol;Kang, Byung-Hwa;Sohn, Bo-Kyoon;Rim, Yo-Sup;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.370-378
    • /
    • 2005
  • The characteristics of heavy metal biosorption on the seaweeds were investigated to develop a biological treatment technology for wastewater polluted with heavy metals. The heavy metal biosorption on seaweeds ranked in the tallowing order: U. pinnatifida$\geq$E. stolonifera$\geq$Laminaria sp.>G. amansii. The Pb was biosorbed in the range of $93{\sim}99%$, and the Cu and Cd were biosorbed in the range of $70{\sim}80%$ at the concentration of the heavy metal of $100mg/{\ell}$ respectively. The seaweed which was pretreated with $CaCl_2$ solution improved the biosorption of the heavy metals. The temperature and pH didn't affect the biosorption of heavy metals. The Langmuir isotherm reasonably fit the data of heavy metal biosorption compared to the Freundlich isotherm. The affinity of metals on the biosorption ranked in the following order: Pb>Zn>Cu>Cd. The biosorption efficiency of the heavy metals on the U. pinnatifida decreased in the multi-component rather than the single component. The heavy metals adsorbed on the U. pinnatifida were recovered using 0.3%-NTA. U. pinnatifida among the seaweed used in this work showed the best performance for the biosorption of the heavy metals.