• Title/Summary/Keyword: Landslide hazard area

Search Result 96, Processing Time 0.033 seconds

Disaster risk predicted by the Topographic Position and Landforms Analysis of Mountainous Watersheds (산지유역의 지형위치 및 지형분석을 통한 재해 위험도 예측)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Extreme climate phenomena are occurring around the world caused by global climate change. The heavy rains exceeds the previous record of highest rainfall. In particular, as flash floods generate heavy rainfall on the mountains over a relatively a short period of time, the likelihood of landslides increases. Gangwon region is especially suffered by landslide damages, because the most of the part is mountainous, steep, and having shallow soil. Therefore, in this study, is to predict the risk of disasters by applying topographic classification techniques and landslide risk prediction techniques to mountain watersheds. Classify the hazardous area by calculating the topographic position index (TPI) as a topographic classification technique. The SINMAP method, one of the earth rock predictors, was used to predict possible areas of a landslide. Using the SINMAP method, we predicted the area where the mountainous disaster can occur. As a result, the topographic classification technique classified more than 63% of the total watershed into open slope and upper slope. In the SINMAP analysis, about 58% of the total watershed was analyzed as a hazard area. Due to recent developments, measures to reduce mountain disasters are urgently needed. Stability measures should be established for hazard zone.

The Technique of Landslide Hazard Prediction Using Vegetation Interpretation of Aerial Photo (항공사진의 식생 판독에 의한 재해 예측 기법)

  • 강인준;곽재하;정재형
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.29-35
    • /
    • 1993
  • The vegetation such as grass, shrub, tree has been used to control the erosion and stabilize the slope for a long time. But the effects of vegetation on slope area is usually neglected in traditional stability analyses. There are many errors in slope analyses in thin soil mantles. Therefore the effects of vegetation is an important factor. But it is difficult and complex to represent the vegetation influence quantitatively in stability analysis. In this study, authors choose the landslide region at the Kum sung dong Kum-jung ku Pusan as a model area. Authors analyzed the degree of slope with the aerial photo interpretation and DTM data extracted from the topographic map, and the relationship of D.B.H. (diameter of breast height), height, and age of tree in field investigation data. Finally authors know the fact that landslide take place approximately 10 or 20 years later in arbitrary afforestable area where the degree of slope is 27. The prevention effect must be considered in the control of vegetation.

  • PDF

Slope stability analysis and landslide hazard assessment in tunnel portal area (터널 갱구지역 사면안정성 및 산사태 위험도 평가)

  • Jeong, Hae-Geun;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.387-400
    • /
    • 2013
  • In this study, the slope stability analysis and the landslide hazard assessment in tunnel portal slope were carried out. First, we selected highly vulnerable areas to slope failure using the slope stability analysis and analyzed the slope failure scale. According to analyses results, high vulnerable area to slope failure is located at 485~495 m above sea level. The slope is stable in a dry condition, while it becomes unstable in rainfall condition. The analysis results of slope failure scale show that the depth of slope failure is maximum 2.1 m and the length of slope failure is 18.6 m toward the dip direction of slope. Second, we developed a 3-D simulation program to analyze characteristics of runout behavior of debris flow. The developed program was applied to highly vulnerable areas to slope failure. The result of 3-D simulation shows that debris flow moves toward the central part of the valley with the movement direction of landslide from the upper part to the lower part of the slope. 3-D simulation shows that debris flow moves down to the bottom of mountain slope with a speed of 7.74 m/s and may make damage to the tunnel portal directly after 10 seconds from slope failure.

Analysis of Landslide and Debris flow Hazard Area using Probabilistic Method in GIS-based (GIS 기반 확률론적 기법을 이용한 산사태 및 토석류 위험지역 분석)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • In areas around Deoksan Li and Deokjeon Li, Inje Eup, Inje Gun, located between $38^{\circ}2^{\prime}55^{{\prime}{\prime}}N$ and $38^{\circ}5^{\prime}50^{{\prime}{\prime}}N$ in latitude and $128^{\circ}11^{\prime}20^{{\prime}{\prime}}E$ and $128^{\circ}18^{\prime}20^{{\prime}{\prime}}E$ in longitude, large-sized avalanche disasters occurred due to Typhoon Ewiniar in 2006. As a result, 29 people were dead or missing, along with a total of 37.25 billion won of financial loss(Gangwon Province, 2006). To evaluate such landslide and debris flow risk areas and their vulnerability, this study applied a technique called 'Weight of Evidence' based on GIS. Especially based on the overlay analysis of aerial images before the occurrence of landslides and debris flows in 2005 and after 2006, this study extracted 475 damage-occurrence areas in a shape of point, and established a DB by using such factors as topography, hydrologic, soil and forest physiognomy through GIS. For the prediction diagram of debris flow and landslide risk areas, this study calculated W+ and W-, the weighted values of each factor of Weight Evidence, while overlaying the weighted values of factors. Besides, the diagram showed about 76% in prediction accuracy, and it was also found to have a relatively high correlationship with the areas where such natural disasters actually occurred.

Prediction and Evaluation of Landslide Hazard Based on Regional Forest Environment (지역산림환경을 기반으로 한 산사태 발생 위험성의 예측 및 평가)

  • Ma, Ho-Seop;Kang, Won-Seok;Lee, Sung-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.233-239
    • /
    • 2014
  • This study was carried out to propose the criteria for the prediction of landslide occurrence through analysis the influence of each factor by using the quantification theory. The results obtained from this study are summarized as follows. From a stepwise regression analysis between the landslide area($m^2$) and environmental factors, the factors strongly affecting the landslide sediment($m^2$) were the Parents rock (igneous), cross slope(complex), coniferous forests (forest type) and slope gradient ($21{\sim}30^{\circ}$). According to the range, it was shown in order of Cross slope (0.2922), Parents rock (0.2691), Forest type (0.2631) and Slope gradient (0.2312). The range of prediction score of landslide occurrence has been distributed between score 0 and score 1.0556, the median value was score 0.5278. The prediction for class I was over 0.7818, for class II was 0.5279 to 0.7917, for class III 0.2694 to 0.5278 and for class IV was below 0.2693. The prediction on landslide occurrence appeared relatively high accuracy rate as 72% for class I and II. Therefore, this score table for landslide will be very useful for judgement of dangerous slope.

Landslide Disaster Countermeasures in Korea (한국(韓國)의 산사태방재대책(山沙汰防災對策)에 관한 연구(研究))

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.63 no.1
    • /
    • pp.51-60
    • /
    • 1984
  • Analysing the reports of disaster-related, average annual death of lives due to the meteorological disasters amounted to be 250, of which about 90 were due to landslide. According to the last 10-year reports, the average area of landslide occurred reaches 275 hectares per year in Korea. The total cost for rehabilitation could annually require more than about 2 billion Won (about US$ 2.5 million). The basic countermeasure policy against such heavy disasters should be definitely taken on prevention rather than rehabilitation after being damaged. However, prevention countermeasures against landslide-related disasters have not been strengthened in Korea although being important. Areas of high landslide hazard must be designated with increase in number from current 10 (35 cities and counties) to 17 (68 cities and counties included : Table 3). Number of regional Erosion Control Stations taking full charge of rehabilitating works on the damaged land resulted from landslide disaster has to increase from currently 15 stations to 25. The stone buttressed terrace structures on the hillside slopes, being typical erosion control measures in Korea have been recently recognized as one of the most effective rehabilitation measures for the land damaged by landslides.

  • PDF

A Study on the Debris Flow Hazard Mapping Method using SINMAP and FLO-2D

  • Kim, Tae Yun;Yun, Hong Sic;Kwon, Jung Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.15-24
    • /
    • 2016
  • This study conducted an evaluation of the extent of debris flow damage using SINMAP, which is slope stability analysis software based on the infinite slope stability method, and FLO-2D, a hydraulic debris flow analysis program. Mt. Majeok located in Chuncheon city in the Gangwon province was selected as the study area to compare the study results with an actual 2011 case. The stability of the slope was evaluated using a DEM of $1{\times}1m$ resolution based on the LiDAR survey method, and the initiation points of the debris flow were estimated by analyzing the overlaps with the drainage network, based on watershed analysis. In addition, the study used measured data from the actual case in the simulation instead of existing empirical equations to obtain simulation results with high reliability. The simulation results for the impact of the debris flow showed a 2.2-29.6% difference from the measured data. The results suggest that the extent of damage can be effectively estimated if the parameter setting for the models and the debris flow initiation point estimation are based on measured data. It is expected that the evaluation method of this study can be used in the future as a useful hazard mapping technique among GIS-based risk mapping techniques.

Utilization of SAR Data for Baseline Environmental Studies of Central Cebu Island, Philippines ? Phase 1

  • Lituanas, Michael B.;Salvador, Jerry Hervacio G.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.981-983
    • /
    • 2003
  • The Remote Sensing Group of the Mines and Geosciences Bureau (MGB) has acquired SAR data of the Central Cebu Island for its research study area. The MGB is one of the proponent of DOST-NASA PACRIM II Project, which is composed of eleven (11) agencies and institutions in the Philippines, that focuses on the scientific application of radar data with the theme on hazard and natural resources management. The PACRIM II Project, being done on three-year term, is slated for completion in the year 2004. The main thrust of the project study of the MGB is the baseline environmental monitoring studies, on which the data are to be fused with some other available data from LandSAT and photogrammetry. The generated data is part of the information for the update of thematic mapping being done. The 12 ${\times}$ 60 km swath AirSAR data covers the Central Cebu Island. The highlights of conducting this research project are: Extent of Watershed Basin boundaries - identification of the tributaries that drain water supply to the metropolitan area; Monitoring of the mountain highways - identification of landslide risk prone sites as part of natural hazard monitoring on a national highway that cuts along the mountainous areas; and Coastline change assessment - monitoring the coastline activities relative to the rapid urbanization and exposure as part of coastal management. The Phase 1 of this report discusses the fusion with the ArcView generated data as baseline studies on the monitoring activities.

  • PDF

A Study on Movement Characteristics Analysis of Debris Accumulation at Flood (홍수시 유송잡물 이동 특성 분석에 관한 연구)

  • Oh, Chae-Yeon;Jun, Kye-Won;Yoon, Young-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.707-710
    • /
    • 2008
  • Recently, a rivers' bridge that locate on among the mountains area is destroyed by debris accumulation and debris flow, because of frequent occurrence of typhoon and a localized torrential downpour. therefore a river make a part of dam's effect. Actually, this situation gives damages like inundation of a bridge upper stream area's. Generally, It the main cause of the occurrence route of the debris accumulation is that outbreaks of driftwood and debris flow because of landslide, that occurred by severe rain storm. Also, a lot of debris are occurred when big flood come up during long period at this time, this kind of debris accumulation remove to other place, in several, and specially, debris accumlation move to the place where the depth of water is deep and velocity is fast river center. According to these kind of fact, this research put in effect and analyze that movement characteristic's numerical simulations of debris accumulation at flood according to a domestic outside literature investigation, on-site monitoring survey and parameter scenario which comes out through the hydraulic modeling analysis.

  • PDF

Analysis of Slope Hazard Probability around Jinjeon-saji Area located in Stone Relics (석조문화재가 위치한 진전사지 주변의 사면재해 가능성 분석)

  • Kim, Kyeong-Su;Song, Young-Suk;Cho, Yong-Chan;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.303-309
    • /
    • 2008
  • A probability of slope hazards was predicted at a natural terrain around the stone relics of Jinjeon-saji area, which is located in Yangyang, Kangwon Province. As the analyzing results of field investigation, laboratory test and geology and geomorphology data, the effect factors of landslides occurrence were evaluated. Also, the landslides prediction map was made up using the prediction model by the effect factors. The landslide susceptibility of stone relics was investigated as the grading classification of occurrence probability. In the landslides prediction map, the high probability area was $3,489m^2$ and it was 10.1% of total prediction area. The high probability area has over 70% of occurrence probability. If landslides are occurred at the predicted area, the three stories stone pagoda of Jinjeon-saji(National treasure No. 122) and the stone lantern of Jinjeon-saji(Treasure No.439) will be collapsed by debris flow.