• Title/Summary/Keyword: Landslide Disaster

Search Result 193, Processing Time 0.022 seconds

Risk Assessment and Potentiality Analysis of Soil Loss at the Nakdong River Watershed Using the Land Use Map, Revised Universal Soil Loss Equation, and Landslide Risk Map (토지이용도, RUSLE, 그리고 산사태 위험도를 이용한 낙동강유역의 토양 침식에 대한 위험성 및 잠재성 분석)

  • Ji, Un;Hwang, Man-Ha;Yeo, Woon-Kwang;Lim, Kwang-Suop
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.617-629
    • /
    • 2012
  • The land use map of the Nakdong River watershed was classified by each land use contents and analyzed to rank the risk of soil loss and erosion. Also, the soil loss and erosion was evaluated in the Nakdong River watershed using Revised Universal Soil Loss Equation (RUSLE) and the subbasin with high risk of soil loss was evaluated with the analysis results of land use contents. Finally, the analyzed results were also compared with the landslide risk map, hence the practical application methods using developed and analyzed results were considered in this study. As a result of land use analysis and RUSLE calculation, it was represented that the Naesung Stream watershed had the high risk for soil loss among the subbasins of the Nakdong River watershed. It was also presented that the high risk area identified by computation of RUSLE was corresponding to the landslide risk area. However, the high risk of soil erosion by land use near the river or wetland was confirmed only through the calculation results of RUSLE.

Topographical Analysis of Landslide in Mt. Woomyeon Using DSM (DSM 자료를 이용한 우면산 산사태 지형 분석)

  • Kim, Gihong;Choi, Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.60-66
    • /
    • 2020
  • Torrential rain causes landslide damage every year. In particular, the 2011 downpour caused landslides at numerous points throughout Mt. Woomyeon, which resulted in considerable damage to people and property. Because it occurred in an urban area, this case became a major social issue and received public attention. Measures were quickly implemented for multilateral investigations and recovery. Landslides caused by heavy rain are greatly affected by rainfall at the time. Landslides from the upper part erode the flow path, increasing the size, causing much damage to the lower part. This study selected a rural village area among the damaged areas of Mt. Woomyeon, and analyzed the change in terrain profile before and after a landslide using the DSM data obtained from airborne LiDAR. This area can be divided into three hydrological basins. For each basin, the analysis was performed on the average slope of each part of the flow path, as well as the erosion and deposition due to soil flow. As a result of the analysis, it was estimated that the total amount of soil from the Jeonwon village was 15,300㎥. These field data based on GIS can be used as basic information to predict damage in the case of a similar disaster, and it can be helpful in analyzing the results of various debris flow simulations.

Major Factors Influencing Landslide Occurrence along a Forest Road Determined Using Structural Equation Model Analysis and Logistic Regression Analysis (구조방정식과 로지스틱 회귀분석을 이용한 임도비탈면 산사태의 주요 영향인자 선정)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.585-596
    • /
    • 2022
  • This study determined major factors influencing landslide occurrence along a forest road near Sangsan village, Sancheok-myeon, Chungju-si, Chungcheongbuk-do, South Korea. Within a 2 km radius of the study area, landslides occur intensively during periods of heavy rainfall (August 2020). This makes study of the area advantageous, as it allows examination of the influence of only geological and tomographic factors while excluding the effects of rainfall and vegetation. Data for 82 locations (37 experiencing landslides and 45 not) were obtained from geological surveys, laboratory tests, and geo-spatial analysis. After some data preprocessing (e.g., error filtering, minimum-maximum normalization, and multicollinearity), structural equation model (SEM) and logistic regression (LR) analyses were conducted. These showed the regolith thickness, porosity, and saturated unit weight to be the factors most influential of landslide risk in the study area. The sums of the influence magnitudes of these factors are 71% in SEM and 83% in LR.

Foundmental Study of Prediction of Natural Disaster Using the Aerial Photo Interpretation (항공사진판독에 의한 자연재해예측을 위한 기초적 연구)

  • Kang, In-Joon;Kwak, Jae-Ha;Jung, Jae-Hyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.10 no.2
    • /
    • pp.57-62
    • /
    • 1992
  • As population is increased, land use types are changed mountainous areas from flatland in Korea. Because natural disaster as landslides occur of life, property, and environmental damage, prediction of landslides have become increasingly important. We focus on the issue for assessment of landslides, not slope stability analysis for a simple slope site. In this study, we could know the correlations of mean, standard deviation for brightness value of imagery by aerial photo scanning. The range of brightness values and standard deviation of landslide area is 35~65 and tend to increment of value, in the every years. When evaluating large regions with past occurrence of landslides, it is possible to search for correlation of site conditions such as degree of slope, soil characteristics, vegetative cover, and rainfall conditions in aerial photo interpretation data.

  • PDF

Hazard analysis and monitoring for debris flow based on intelligent fuzzy detection

  • Chen, Tim;Kuo, D.;Chen, J.C.Y.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.59-67
    • /
    • 2020
  • This study aims to develop the fuzzy risk assessment model of the debris flow to verify the accuracy of risk assessment in order to help related organizations reduce losses caused by landslides. In this study, actual cases of landslides that occurred are utilized as the database. The established models help us assess the occurrence of debris flows using computed indicators, and to verify the model errors. In addition, comparisons are made between the models to determine the best one to use in practical applications. The results prove that the risk assessment model systems are quite suitable for debris flow risk assessment. The reproduction consequences of highlight point discovery are shown in highlight guide coordinating toward discover steady and coordinating component focuses and effectively identified utilizing these two systems, by examining the variety in the distinguished highlights and the element coordinating.

A Morphological Study on Plane Shape and Space of Deposit in the Mountain Torrents (황폐계류(荒廢溪流)의 퇴적형상(堆積形狀)과 퇴적공간(堆積空間))

  • Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.6 no.1
    • /
    • pp.8-17
    • /
    • 1989
  • Recent development of industry and urbanization in the interior of mountainous area increases the possibility of occurence of natural disaster, such as flood, landslide and deblis-flow. Erosion control facilities, which were the most significant activity to riverbed fixiation, were constructed at the downstream of the experimental basin. In the mountain torrents, the complex bed load transport has occurred by the drift of running water, and resulting in a formation of terrace deposits. Especially, channel migration caused by scouring and deposition frequently occurs at the wide areas of the river bed. Consequently, the unsymmetrical river bed charactristics indicate the degree of the channel migration.

  • PDF

A Basic Study on the Evaluation Factor for Deteriorated Level of Rural House (농촌주택의 노후도 평가요소 도출을 위한 기초연구)

  • Park, Gil-Beom;Park, Jun-Mo;Kim, Ok-Kyue
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.107-108
    • /
    • 2014
  • The rural area has aged and depressed for urban area in Korea. Furthermore, the rural house has deteriorated and is vulnerable to disaster which collapse, fire, landslide, and so on. For this matter, it need to an evaluated system for deteriorated level of rural house. The evaluated system has a repairing method and an estimated cost for rural house to offer native in rural area. This study could draw evaluation factor for deteriorated level of rural house as a basic study for the evaluated system. The evaluation factors is compared the Korean housing performance grade indication system, the Korean green building certification criteria, and the Japanese housing performance indication system. As a result, they could eight types. There are a mothproof, an waterproof, a finishing material, an asbestos cement slate of roofing, a mobility right, an opening and closing of doors and windows, an indoor environment.

  • PDF

Physical test study on double-row long-short composite anti-sliding piles

  • Shen, Yongjiang;Wu, Zhijun;Xiang, Zhengliang;Yang, Ming
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.621-640
    • /
    • 2017
  • The double-row long-short composite anti-sliding piles system is an effective way to control the landslides with high thrust. In this study, The double-row long-short composite anti-sliding piles with different load segment length (cantilever length) and different pile row spacing were studied by a series of physical tests, by which the influences of load segment length of rear-row piles as well as pile row spacing on the mechanical response of double-row long-short composite anti-sliding pile system were investigated. Based on the earth pressures in front of and behind the piles obtained during tests, then the maximum bending moments of the fore-row and the rear-row piles were calculated. By ensuring a equal maximum moments in the fore-row and the rear-row piles, the optimum lengths of the rear-row piles of double-row long-short composite system under different piles spacing were proposed. To investigate the validity of the reduced scale tests, the full-scale numerical models of the landside were finally conducted. By the comparisons between the numerical and the physical test results, it could be seen that the reduced scale tests conducted in this study are reliable. The results showed that the double-row long-short composite anti-sliding piles system is effective in the distribution of the landslide thrust to the rear-row and the fore-row piles.

A Study on the Infinite Slope Safty Factor Applied to the Roots Cohesion (뿌리 점착력을 적용한 무한사면 안전률에 관한 연구)

  • Choi, Won-Il;Choi, Eun-Hwa;Suh, Jin-Won;Jeon, Seong-Kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.13-24
    • /
    • 2016
  • The safety factor of an infinite slope tends to be analyzed as lower when the effects of root cohesion are not considered into the equation. Thus, it is essential to consider regional characteristics such as root cohesion and crown density in order to obtain a reasonable safety factor value. In this study, The safety factor of the landslide model, both before and after considering crown density and root cohesion, was calculated and a comparative analysis was carried out. The safety factor is increased by the effect of roots cohesion of the analysis results, the amount of increase in safety factor along the inclination of the slope angle has been analyzed with various things, the effect of reinforcing the roots cohesion, slope of the lower angle it was found that the higher the safety factor increase.

A Random Walk Model for Estimating Debris Flow Damage Range (랜덤워크 모델을 이용한 토석류 산사태 피해범위 산정기법 제안)

  • Young-Suk Song;Min-Sun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.201-211
    • /
    • 2023
  • This study investigated the damage range of the debris flow to predict the amount of collapsed soil in a landslide event. The height of the collapsed slope and the distance traveled by the collapsed soil were used to predict the total trajectory distance using a random walk model. Debris flow trajectory probabilities were calculated through 10,000 Monte Carlo simulations and were used to calculate the damage range as measured from the landslide scar to its toe. Compiled information on debris flows that occurred in the Cheonwangbong area of Mt. Jirisan was used to test the accuracy of the proposed random walk model in estimating the damage range of debris flow. Results of the comparison reveal that the proposed model shows reasonable accuracy in estimating the damage range of debris flow and that using 10 m × 10 m cells allows the damage range to be reproduced with satisfactory precision.