• Title/Summary/Keyword: Landscape Administration

Search Result 326, Processing Time 0.028 seconds

Management Strategies of Ventilation Paths for Improving Thermal Environment - A Case Study of Gimhae, South Korea - (도시 열환경 개선을 위한 바람길 관리 전략 - 김해시를 사례로 -)

  • EUM, Jeong-Hee;SON, Jeong-Min;SEO, Kyeong-Ho;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.115-127
    • /
    • 2018
  • This study aims to propose management strategies of ventilation paths for improving urban thermal environments. For this purpose, Gimhae-si in Gyeongsangnamdo was selected as a study area. We analyzed hot spots and cool spots in Gimhae by using Landsat 8 satellite image data and spatial statistical analysis, and finally derived the vulnerable areas to thermal environment. In addition, the characteristics of ventilation paths including wind direction and wind speed were analyzed by using data of the wind resource map provided by Korea Meteorological Administration. As a result, it was found that a lot of hot spots were similar to those with weak wind such as Jinyoung-eup, Jillye-myeon, Juchon-myeon and the downtown area. Based on the analysis, management strategies of ventilation paths in Gimhye were presented as follows. Jinyoung-eup and Jillye-myeon with hot spot areas and week wind areas have a strong possibility that hot spot areas will be extended and strengthened, because industrial areas are being built. Hence, climate-friendly urban and architectural plans considering ventilation paths is required in these areas. In Juchon-myeon, where industrial complexes and agricultural complexes are located, climate-friendly plans are also required because high-rise apartment complexes and an urban development zone are planned, which may induce worse thermal environment in the future. It is expected that a planning of securing and enlarging ventilation paths will be established for climate-friendly urban management. and further the results will be utilized in urban renewal and environmental planning as well as urban basic plans. In addition, we expect that the results can be applied as basic data for climate change adaptation plan and the evaluation system for climate-friendly urban development of Gimhye.

Modification of WASP5 for Ungauged Watershed Management and Its Application (미계측 유역관리를 위한 WASP5 모형의 개선 및 적용성 검토)

  • Kim, Jin-Ho;Shin, Dong-Suk;Kwun, Soon-Kuk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • This study was carried out to develop a water quality simulation model for the evaluation of an ungauged watershed. For this purpose, the WASP5 model was selected and modified. The model consists of three sub-models, LOAD-M, DYN-M, and EUT-M. LOAD-M, an empirical model, estimates runoff loadings using point and non-point source data of villages. The Geum River Estuary watershed was selected to calibrate and verify the Modified-WASP5. The LOAD-M model was established using field data of water quality and quantity at the gauging stations of the watershed and was applied to the ungauged watersheds, taking the watershed properties into consideration. The result of water quality simulation using Modified-WASP5 shows that the observed average BOD data from Gongju and Ganggyeong were 2.6 mg/L and 2.8 mg/L, and the simulated data were 2.5 mg/L and 2.4 mg/L, respectively. Generally, simulation results were in good agreement with the observed data. This study focused on formulating an integrated model for evaluating ungauged watersheds. Even though simulation results varied slightly due to limited availability of data, the model developed in this study would be a useful tool for the assessment and management of ungauged watersheds.

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Management Guidelines and the Structure of Vegetation in Natural Monuments Koelreuteria Paniculata Community (천연기념물 모감주나무군락의 식생구조와 관리제언)

  • Shin, Byung Chul;Lee, Won Ho;Kim, Hyo Jeong;Hong, Jeum Kyu
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.100-117
    • /
    • 2010
  • This study analyzed vegetation structure of natural monuments Koelreuteria paniculata community in search of a conservation and management plan. Plant sociological analysis of Koelreuteria paniculata community indicates that it can be classified into Achyranthes japonica subcommunity and Rhodotypos scandens subcommunity and Trachelospermum asiaticum var. intermedium subcommunity. While Koelreuteria paniculata community of Ahnmyeondo is composed of sub tree layer and herb layer, those of Pohang and Wando are composed of tree layer, Sub tree layer, shrub layer, herb layer. The results of tree vitality analysis showed that those in Ahnmyeondo appeared to be relatively low when compared to those in Pohang and Wando-gun. This can be understood in two different aspects: disease and insects vulnerability due to a relatively simple structure and lack of competitive species, and decreased vitality / natural branch losses due to crown competition arising from high density. The result of soil characteristics analysis showed that soil texture, soil pH, organic matter, $p_2O_5$, exchange positive ion were sufficient for tree growth while total nitrogen was not, so that discretion would be needed for fertilizer application. As there were damages of disease and inscet, but only for 10~15% of the entire area; it still requires consistent preconsideration. The study suggests the management methods for preservation of Koelreuteria paniculata community. First, securing designated areas is necessary in order to minimize environment deterioration due to surrounding development. Especially, for sections with decreased areas, expansion of designated areas through land purchase should also be considered. Second, artificial interference may affect the livestock. Therefore, monitoring of artificial interference is necessary, based on which protection projects must be conducted. Third, from analysis of young plants which influence the maintenance mechanisms of Koelreuteria paniculata community, a decrease compared to the prior year was observed; investigation is needed. Therefore, an active management policy through status examination of livestock such as germination and young plants is necessary.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

A Study on the Differences in Breeding Call of Cicadas in Urban and Forest Areas (도시와 산림지역 매미과 번식울음 차이 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.698-708
    • /
    • 2018
  • The purpose of this study was to investigate differences in the breeding call characteristics of cicada species found in urban and forest areas in the central region of Korea by examining the interspecific effects and environmental factors affecting the breeding calls and breeding call patterns. The selected research sites were Gyungnam Apartment in Bangbae-dong, Seoul for the urban area and Chiak Mountain National Park in Wonju for the forest area. The research method for both sites was to record cicada breeding calls for 24 hours with a recorder installed at the site and analyze the results. Data from the Korea Meteorological Administration were used for environmental factors. The research period was from June 19, 2017 to September 30, 2017. As a result of the study, there were differences in the emergence of species between the two research sites: while Platypleura kaempferi, Hyalessa fuscata, Meimuna opalifera, Graptopsaltria nigrofuscata, and Suisha coreana were observed at both sites, Cryptotympana atrata was observed in the urban area and Leptosemia takanonis in the forest area only. The emergence periods of cicadas at the two sites were also different. The activities of P. kaempferi and L. takanonis were noticeable in the forest area. In the urban area, however, L. takanonis was not observed and the duration of activity of P. kaempferi was short. In the urban area, C. atrata appeared and sang for a long period; H. fuscata, M. opalifera, and G. nigrofuscata appeared earlier than in the forest area. S. coreana appeared earlier in the forest area than in the urban area. According to the daily call cycle analysis, even cospecific cicada showed a wide variation in their daily cycle depending on the region and the interspecific effects between different cicadas, and the environmental differences between the urban and forest areas affected the calls of cicadas. The results of correlation analysis between each cicada breeding calls and environmental factors of each site showed positive correlation with average temperature of most cicadas except P. kaempferi and C. atrata. The same species of each site showed positive correlations with more diverse weather factors such as solar irradiance. Logistic regression analysis showed that cicadas with overlapping calling times had significant effects on each other's breeding calls. C. atrata, which appeared only in the urban area, had a positive effect on the calling frequency of H. fuscata, M. opalifera, and G. nigrofuscata, which called in the same period. Additionally, L. takanonis, which appeared only in the forest area, and P. kaempferi had a positive effect on each other, and M. opalifera had a positive effect on the calling frequency of H. fuscata and G. nigrofuscata in the forest area. For the environmental factors, the calling frequency of cicadas was affected by the average temperatures of the urban and forest areas, and cicadas that appeared in the forest area were also affected by the amount of solar radiation. According to the results of statistical analysis, urban cicadas with similar activity periods are influenced by species, especially with respect to urban dominant species, C. atrata. Forest cicadas were influenced by species, mainly M. opalifera, which is a forest dominant species. The results of the meteorological impact analysis were similar to those of the correlation analysis, and were influenced mainly by the temperature, and the influence of the insolation was more increased in the forests.