• Title/Summary/Keyword: Landsat satellite imagery

Search Result 164, Processing Time 0.027 seconds

Unsupervised Classification of Landsat-8 OLI Satellite Imagery Based on Iterative Spectral Mixture Model (자동화된 훈련 자료를 활용한 Landsat-8 OLI 위성영상의 반복적 분광혼합모델 기반 무감독 분류)

  • Choi, Jae Wan;Noh, Sin Taek;Choi, Seok Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.53-61
    • /
    • 2014
  • Landsat OLI satellite imagery can be applied to various remote sensing applications, such as generation of land cover map, urban area analysis, extraction of vegetation index and change detection, because it includes various multispectral bands. In addition, land cover map is an important information to monitor and analyze land cover using GIS. In this paper, land cover map is generated by using Landsat OLI and existing land cover map. First, training dataset is obtained using correlation between existing land cover map and unsupervised classification result by K-means, automatically. And then, spectral signatures corresponding to each class are determined based on training data. Finally, abundance map and land cover map are generated by using iterative spectral mixture model. The experiment is accomplished by Landsat OLI of Cheongju area. It shows that result by our method can produce land cover map without manual training dataset, compared to existing land cover map and result by supervised classification result by SVM, quantitatively and visually.

Change Detection Using the IKONOS Satellite Images (IKONOS 위성영상을 이용한 변화 탐지)

  • Kang, Gil-Seon;Shin, Sang-Cheul;Cho, Kyu-Jon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.61-66
    • /
    • 2003
  • The change detection using the satellite imagery and airphotos has been carried out in the application of terrain mapping, environment, forestry, facility detection, etc. The low-spatial resolution data such as Landsat, NOAA satellite images is generally used for automatic change detection, while on the other hand the high-spatial resolution data is used for change detection by image interpretation. The research to integrate automatic method with manual change detection through the high-spatial resolution satellite image is performed. but the problem such as shadow, building 'lean' due to perspective geometry and precision geocorrection was found. In this paper we performed change detection using the IKONOS satellite images, and present the concerning problem.

  • PDF

Generation of Time-Series Data for Multisource Satellite Imagery through Automated Satellite Image Collection (자동 위성영상 수집을 통한 다종 위성영상의 시계열 데이터 생성)

  • Yunji Nam;Sungwoo Jung;Taejung Kim;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1085-1095
    • /
    • 2023
  • Time-series data generated from satellite data are crucial resources for change detection and monitoring across various fields. Existing research in time-series data generation primarily relies on single-image analysis to maintain data uniformity, with ongoing efforts to enhance spatial and temporal resolutions by utilizing diverse image sources. Despite the emphasized significance of time-series data, there is a notable absence of automated data collection and preprocessing for research purposes. In this paper, to address this limitation, we propose a system that automates the collection of satellite information in user-specified areas to generate time-series data. This research aims to collect data from various satellite sources in a specific region and convert them into time-series data, developing an automatic satellite image collection system for this purpose. By utilizing this system, users can collect and extract data for their specific regions of interest, making the data immediately usable. Experimental results have shown the feasibility of automatically acquiring freely available Landsat and Sentinel images from the web and incorporating manually inputted high-resolution satellite images. Comparisons between automatically collected and edited images based on high-resolution satellite data demonstrated minimal discrepancies, with no significant errors in the generated output.

Monitoring of Lake Water Quality Using LANDSAT TM Imagery Data (LANDSAT TM 영상자료를 이용한 호수 수질 관측)

  • Kim, Tae-Geun;Kim, Kwang-Eun;Cho, Gi-Sung;Kim, Hwan-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.23-33
    • /
    • 1996
  • The conventional monitoring of water quality constrained by time and equipment produce neither complete nor synoptic geographic coverage of pollutant distribution, transport, and water quality. To circumvent these limitations in temporal and spatial measurements, the use of remote sensing is increasingly being involved in the lacustrine environmental research. Consequently, satellite remote sensing, with its synoptic coverage, is used to obtain the eutrophication-related water quality parameters in Daecheong reservoir in this study. The approach involved acquisition of water quality samples from boats of 15 sites on 20 June 1995 and 30 sites on 18 March 1996, simultaneous with Landsat-5 satellite overpass. Regression models have been developed between the water quality parameters and Landsat Thematic Mapper(TM) digital data. The best regression model was determined based on the correlation coefficient which was higher than 0.6. As a result, satellite remote sensing can provide meaningful information on water quality parameters. The regression models developed in this study show good relationship for transparency, turbidity, SS, and chlorophyll, but not for TN and TP because their spectral characteristics are not well defined.

  • PDF

Performance Study of Satellite Image Processing on Graphics Processors Unit Using CUDA

  • Jeong, In-Kyu;Hong, Min-Gee;Hahn, Kwang-Soo;Choi, Joonsoo;Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.683-691
    • /
    • 2012
  • High resolution satellite images are now widely used for a variety of mapping applications including photogrammetry, GIS data acquisition and visualization. As the spectral and spatial data size of satellite images increases, a greater processing power is needed to process the images. The solution of these problems is parallel systems. Parallel processing techniques have been developed for improving the performance of image processing along with the development of the computational power. However, conventional CPU-based parallel computing is often not good enough for the demand for computational speed to process the images. The GPU is a good candidate to achieve this goal. Recently GPUs are used in the field of highly complex processing including many loop operations such as mathematical transforms, ray tracing. In this study we proposed a technique for parallel processing of high resolution satellite images using GPU. We implemented a spectral radiometric processing algorithm on Landsat-7 ETM+ imagery using CUDA, a parallel computing architecture developed by NVIDIA for GPU. Also performance of the algorithm on GPU and CPU is compared.

Detection of Surface Water Bodies in Daegu Using Various Water Indices and Machine Learning Technique Based on the Landsat-8 Satellite Image (Landsat-8 위성영상 기반 수분지수 및 기계학습을 활용한 대구광역시의 지표수 탐지)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, In-Sun;CHUNG, Youn-In
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Detection of surface water features including river, wetland, reservoir from the satellite imagery can be utilized for sustainable management and survey of water resources. This research compared the water indices derived from the multispectral bands and the machine learning technique for detecting the surface water features from he Landsat-8 satellite image acquired in Daegu through the following steps. First, the NDWI(Normalized Difference Water Index) image and the MNDWI(Modified Normalized Difference Water Index) image were separately generated using the multispectral bands of the given Landsat-8 satellite image, and the two binary images were generated from these NDWI and MNDWI images, respectively. Then SVM(Support Vector Machine), the widely used machine learning techniques, were employed to generate the land cover image and the binary image was also generated from the generated land cover image. Finally the error matrices were used for measuring the accuracy of the three binary images for detecting the surface water features. The statistical results showed that the binary image generated from the MNDWI image(84%) had the relatively low accuracy than the binary image generated from the NDWI image(94%) and generated by SVM(96%). And some misclassification errors occurred in all three binary images where the land features were misclassified as the surface water features because of the shadow effects.

Image Fusion for Improving Classification

  • Lee, Dong-Cheon;Kim, Jeong-Woo;Kwon, Jay-Hyoun;Kim, Chung;Park, Ki-Surk
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1464-1466
    • /
    • 2003
  • classification of the satellite images provides information about land cover and/or land use. Quality of the classification result depends mainly on the spatial and spectral resolutions of the images. In this study, image fusion in terms of resolution merging, and band integration with multi-source of the satellite images; Landsat ETM+ and Ikonos were carried out to improve classification. Resolution merging and band integration could generate imagery of high resolution with more spectral bands. Precise image co-registration is required to remove geometric distortion between different sources of images. Combination of unsupervised and supervised classification of the fused imagery was implemented to improve classification. 3D display of the results was possible by combining DEM with the classification result so that interpretability could be improved.

  • PDF

Classification of Sediment Types of Tidal Flat Area in the South of Kanghwa Island using Landsat Images (Landsat 위성영상을 이용한 강화도 남단 갯벌의 퇴적 유형 분류)

  • Park, Sungwoo;Jeong, Jongchul
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.4
    • /
    • pp.231-238
    • /
    • 2002
  • In this study we classified sediment types of tidal flat using Landsat-5 images. This is for groping the method which can analyze correctly various kinds of sediment faces through satellite images. This work was performed by referencing ground truth of sediment faces which was investigated in the field. With this data we classified Landsat-5 image of 1997's to grope a most suitable classification method. As a result, in case of south Kanghwa island area, it was the optimum way to compound band 4, 5, 7 of Landsat-5 TM imagery. And, this work classified 3 kinds of sediment faces - M(mud), sM(sandy mud) and (g)M(slightly gravelly mud) - in land and mixed water area. It is anticipated that if this method is applied to a image of extremely lower sea level time, it can classify the sediment types of a broad tidal flat area. This is expected to be a beginning of estimating the effect of sediment faces to the change of the tidal flat ecosystem.

Applicability Analysis of Constructing UDM of Cloud and Cloud Shadow in High-Resolution Imagery Using Deep Learning (딥러닝 기반 구름 및 구름 그림자 탐지를 통한 고해상도 위성영상 UDM 구축 가능성 분석)

  • Nayoung Kim;Yerin Yun;Jaewan Choi;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.351-361
    • /
    • 2024
  • Satellite imagery contains various elements such as clouds, cloud shadows, and terrain shadows. Accurately identifying and eliminating these factors that complicate satellite image analysis is essential for maintaining the reliability of remote sensing imagery. For this reason, satellites such as Landsat-8, Sentinel-2, and Compact Advanced Satellite 500-1 (CAS500-1) provide Usable Data Masks(UDMs)with images as part of their Analysis Ready Data (ARD) product. Precise detection of clouds and their shadows is crucial for the accurate construction of these UDMs. Existing cloud and their shadow detection methods are categorized into threshold-based methods and Artificial Intelligence (AI)-based methods. Recently, AI-based methods, particularly deep learning networks, have been preferred due to their advantage in handling large datasets. This study aims to analyze the applicability of constructing UDMs for high-resolution satellite images through deep learning-based cloud and their shadow detection using open-source datasets. To validate the performance of the deep learning network, we compared the detection results generated by the network with pre-existing UDMs from Landsat-8, Sentinel-2, and CAS500-1 satellite images. The results demonstrated that high accuracy in the detection outcomes produced by the deep learning network. Additionally, we applied the network to detect cloud and their shadow in KOMPSAT-3/3A images, which do not provide UDMs. The experiment confirmed that the deep learning network effectively detected cloud and their shadow in high-resolution satellite images. Through this, we could demonstrate the applicability that UDM data for high-resolution satellite imagery can be constructed using the deep learning network.

Development of Suspended Sediment Algorithm for Landsat TM/ETM+ in Coastal Sea Waters - A Case Study in Saemangeum Area - (Landsat TM/ETM+ 연안 부유퇴적물 알고리즘 개발 - 새만금 주변 해역을 중심으로 -)

  • Min Jee-Eun;Ahn Yu-Hwan;Lee Kyu-Sung;Ryu Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.87-99
    • /
    • 2006
  • The Median Resolution Sensors (MRSs) for land observation such as Landsat-ETM+ and SPOT-HRV are more effective than Ocean Color Sensors (OCSs) for studying of detailed ecological and biogeochemical components of the coastal waters. In this study, we developed suspended sediment algorithm for Landsat TM/ETM+ by considering the spectral response curve of each band. To estimate suspended sediment concentration (SS) from satellite image data, there are two difference types of algorithms, that are derived for enhancing the accuracy of SS from Landsat imagery. Both empirical and remote sensing reflectance model (hereafter referred to as $R_{rs}$ model) are used here. This study tried to compare two algorithm, and verified using in situ SS data. It was found that the empirical SS algorithm using band 2 produced the best result. $R_{rs}$ model-based SS algorithm estimated higher values than empirical SS algorithm. In this study we used $R_{rs}$ model developed by Ahn (2000) focused on the Mediterranean coastal area. That's owing to the difference of oceanic characteristics between Mediterranean and Korean coastal area. In the future we will improve that $R_{rs}$ model for the Korean coastal area, then the result will be advanced.