• 제목/요약/키워드: Landsat TM image

검색결과 249건 처리시간 0.037초

Comparing LAI Estimates of Corn and Soybean from Vegetation Indices of Multi-resolution Satellite Images

  • Kim, Sun-Hwa;Hong, Suk Young;Sudduth, Kenneth A.;Kim, Yihyun;Lee, Kyungdo
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.597-609
    • /
    • 2012
  • Leaf area index (LAI) is important in explaining the ability of the crop to intercept solar energy for biomass production and in understanding the impact of crop management practices. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal series of IKONOS, Landsat TM, and MODIS satellite images using empirical models and demonstrates its use with data collected at Missouri field sites. LAI data were obtained several times during the 2002 growing season at monitoring sites established in two central Missouri experimental fields, one planted to soybean (Glycine max L.) and the other planted to corn (Zea mays L.). Satellite images at varying spatial and spectral resolutions were acquired and the data were extracted to calculate normalized difference vegetation index (NDVI) after geometric and atmospheric correction. Linear, exponential, and expolinear models were developed to relate temporal NDVI to measured LAI data. Models using IKONOS NDVI estimated LAI of both soybean and corn better than those using Landsat TM or MODIS NDVI. Expolinear models provided more accurate results than linear or exponential models.

위성영상을 이용한 대청호 남조류의 공간 분포 맵핑 (Spatial Distribution Mapping of Cyanobacteria in Daecheong Reservoir Using the Satellite Imagery)

  • 백신철;박진기;박종화
    • 한국농공학회논문집
    • /
    • 제58권2호
    • /
    • pp.53-63
    • /
    • 2016
  • Monitoring of cyanobacteria bloom in reservoir systems is important for water managers responsible of water supply system. Cyanobacteria affect the taste and smell of water and pose considerable filtration problems at water use places. Harmful cyanobacteria bloom in reservoir have significant economic impacts. We develop a new method for estimating the cyanobacteria bloom using Landsat TM and ETM+ data. Developed model was calibrated and cross-validated with existing in situ measurements from Daecheong Reservoir's Water Quality Monitoring Program and Algae Alarm System. Measurements data of three stations taken from 2004 to 2012 were matched with radiometrically converted reflectance data from the Landsat TM and ETM+ sensor. Stepwise multiple linear regression was used to select wavelengths in the Landsat TM and ETM+ bands 1, 2 and 4 that were most significant for predicting cyanobacteria cell number and bio-volume. Based on statistical analysis, the linear models were that included visible band ratios slightly outperformed single band models. The final monitoring models captured the extents of cyanobacteria blooms throughout the 2004-2012 study period. The results serve as an added broad area monitoring tool for water resource managers and present new insight into the initiation and propagation of cyanobacteria blooms in Daecheong reservoir.

Landsat TM 자료를 이용한 서남해 연안 습지의 시공간 변화 분석에 관하여 (An Analysis of Spatiotemporal Change of Southwestern Coastal Wetlands Using Landsat Thematic Mapper Data)

  • 이기철;임병선;우창호;조영환
    • 환경영향평가
    • /
    • 제6권1호
    • /
    • pp.55-66
    • /
    • 1997
  • This study summarizes the use of satellite data to detect the change of southwestern coastal wetlands in Korea. The images used for this study were two Landsat Thematic Mapper(TM) images (June 12, 1984 & June 2, 1992). TM images were used to classify such different types of wetlands as aquatic bed, nonaquatic bed and other land use in the region. Then it, was possible to a) determine the status of wetlands using image classification products, and b) detect the changes of various types of wetlands influenced by both human and nature. The results from spatiotemporal analysis showed that approximately 120 lad of coastal wetlands were lost from the year of 1984 to 1992. 71 % of the lost wetlands were converted to the reclaimed land. This loss of wetlands has been causing the profound environmental impacts. It has been successfully proved that satellite data are very effective for spatiatemporal change analysis, especially for that of coastal wetlands.

  • PDF

Flood Submerged Area Mapping Using the Integration of SAR /TM Images

  • Xinglian, Qiu;Jincun, zhang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.287-290
    • /
    • 2002
  • Real-time flood submerged area map provides important scientific basis for the decision-making of flood control and relieving disaster. Taking the Wuhan area as an example, this article gives out a image interpretation method under influence of flood, and describes real-time or quasi-real-time flood submerged area map by using the integration of ERS-2 SAR image and LANDSAT TM image in support of remote sensing images process software ERDAS.

  • PDF

Landsat TM/ETM+ 연안 부유퇴적물 알고리즘 개발 - 새만금 주변 해역을 중심으로 - (Development of Suspended Sediment Algorithm for Landsat TM/ETM+ in Coastal Sea Waters - A Case Study in Saemangeum Area -)

  • 민지은;안유환;이규성;유주형
    • 대한원격탐사학회지
    • /
    • 제22권2호
    • /
    • pp.87-99
    • /
    • 2006
  • 연안 해역에서 공간적으로 미세한 생태학적, 생지화학적 변화를 파악하기 위해서는 저해상도의 해색위성보다 Landsat ETM+나 SPOT HRV와 같은 중간 해상도의 육상관측 위성을 이용하는 것이 더 효과적이다. 이 연구에서는 각 밴드의 spectral response curve를 고려하여 Landsat TM/ETM+용 부유퇴적물 농도 추정 알고리즘을 개발하였다. Landsat 영상으로부터 연안 부유퇴적물 알고리즘을 향상시키기 위하여 두 가지 타입의 알고리즘 사용하였는데, 현장관측에 의한 경험적 모델과 원격반사도 모델이다. 본 연구에서는 이 두 가지 방법으로 연안 지역에서의 부유퇴적물 농도추정 알고리즘을 만들어보고, 현장 관측 자료를 이용하여 두 알고리즘을 검증 및 비교해 보았다. 그 결과 2번 밴드를 사용한 경험적 알고리즘이 현장조사 자료와 가장 잘 일치하였다. 원격반사도 모델 기반의 알고리즘은 경험적 모델에 비해 높은 값을 추정하는 결과를 얻을 수 있었다. 이 연구에서 사용된 모델은 안유환(2000)에 의해 개발된 것으로서 지중해 해역의 특성에 맞도록 개발된 것이다. 따라서 해수성분요소 등의 해역 특성이 매우 다른 우리나라 해역에 맞지 않아서 생긴 결과라 생각된다. 차후에 이 모델을 우리나라 해역 특성에 맞도록 개발한다면 좋은 결과를 얻을 수 있을 것으로 기대된다.

OBSERVATION OF MICROPHYTOBENTHIC BIOMASS IN HAMPYEONG BAY USING LANDSAT TM IMAGERY

  • Choi, Jae-Won;Won, Joon-Sun;Lee, Yoon-Kyung;Kwon, Bong-Oh;Koh, Chul-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.441-444
    • /
    • 2005
  • The goal of this study is to investigate the relationship between microphytobenthic biomass and normalized vegetation index obtained from Landsat TM images. Monitoring a seasonal change of microphytobenthic biomass in the sand bar is specifically focused. Since the study area, Hampyeong Bay, was difficult to approach, we failed to obtain ground truths simultaneously on satellite image acquisition. Instead, chlorophyll-a concentration in surface top layer was measured on different dates for microphytobenthic biomass. Although data were acquired on different dates, a correlation between the field and satellite images was calculated for investigating general trends of seasonal change. NDVI and tasseled cap transformed images were also used to review the variation of microphytobenthic biomass by using Landsat TM and ETM+ images. Atmosphere effects were corrected by applying COST model. Seaweeds were also flouring in the same season of microphytobentic blooming. Songseok-ri area was minimally affected by seaweeds from February to May, and selected as a test site. NDVI value was classified into high-, moderate-, and low-grade. It was well developed over fme-grained sediments and rapidly reduced from May to November over sand bar. In this bay, correlation between grain size and microphytobenthic biomass was clearly seen. From the classified NDVI and tasseled cap transformed data, we finally constructed spatial distribution and seasonal variation maps of microphytobenthic biomass.

  • PDF

Landsat TM 자료와 표충퇴적물 분석을 통한 천수만 간석지 퇴적물 분류 (Classification of Tidal Flat Deposits in the Cheonsu-bay using Landsat TM Data and Surface Sediment Analysis)

  • 장동호;지광훈;이현영
    • 환경영향평가
    • /
    • 제11권4호
    • /
    • pp.247-258
    • /
    • 2002
  • This study aimed at verifying the grain-sized distribution of surface deposits in a tidal flat using multi-spectral Landsat TM. In this study, we employed the grain-sized analysis, PCA and unsupervised classification techniques for analyzing the distribution of deposits. As a result in this study, the unsupervised classification method using PCA image was found to be most useful in classifying tidal flat deposits using satellite data. This method is considerably effective in analyzing not only the aspects of distribution in terms of accumulated deposits and erosion, but also the changes in seaside topography and shoreline. The grain-sized distribution analysis indicates that the mud flat inside the Cheonsu-bay tidal flat is distributed, the mixed flat located in the middle, and the sand flat distributed near the sea. The sand flat is dominant around the southern part of Seomot isle and its beach. On the other hand, the mud and mixed flat is dominant on the western part. Likewise, the western coast of Seomot isle and its beach is significantly affected by waves facing the offshore. However, the eastern side of the bay could be a site for the evolution of tidal flat made of fine materials where it is less affected by ocean waves. These results show that multi-spectral satellite data are effective for the classification of distribution materials and environmental impact assessment and continuous monitoring. In particular, the research on environmental deposits can provide important decision-supporting information for decision-making on seaside development, by analyzing the progress of deposits and environmental changes.

Landsat TM 위성영상과 비율영상을 적용한 지상부 탄소 저장량 추정 - $k$NN 알고리즘 및 회귀 모델을 중점적으로 (Estimation of Aboveground Biomass Carbon Stock Using Landsat TM and Ratio Images - $k$NN algorithm and Regression Model Priority)

  • 유수홍;허준;정재훈;한수희;김경민
    • 대한공간정보학회지
    • /
    • 제19권2호
    • /
    • pp.39-48
    • /
    • 2011
  • 대기 중 온실가스 증가로 인한 지구온난화의 영향으로 각종 자연 재해가 증가하면서, 온실가스에서 가장 큰 비율을 차지하는 이산화탄소의 자연 포집지인 산림이 저장하고 있는 탄소량을 추정하기 위한 많은 연구가 진행 중에 있다. 하지만 국내 지역의 환경에 적합한 탄소저장량 추정 기법 및 자료 선정에 대한 연구는 아직 부족한 상황으로, 이에 대한 연구가 요구되고 있다. 본 논문에서는 전 세계적으로 탄소저장량 추정에 보편적으로 이용되고 있는 회귀 모델과 $k$NN($k$-Nearest Neighbor) 알고리즘을 이용하여 충청북도 단양군을 대상으로 산림이 저장하고 있는 탄소 저장량을 추정하고 결과를 비교 분석하였다. 연구 자료로써 Landsat TM 영상과 제5차 NFI(National Forest Inventory) 자료를 이용하였으며, 지형효과 보정 및 식생 구분에 특화된 다양한 비율영상을 사용하였다. 분석 결과, 단양군의 탄소저장량 추정에는 회귀 모델보다 $k$NN 알고리즘을 이용하는 것이 더 유리하며, 비율영상의 경우 정확도 향상에 큰 영향을 미치지 않는 것으로 나타났다.

LANDSAT-5 TM 영상의 대기보정에 따른 클래스별 화소값 분포 변화 비교 (Comparison of Digital Number Distribution Changes of Each Class according to Atmospheric Correction in LANDSAT-5 TM)

  • 정태웅;어양담;김태렬;임상범;박두열;박황수;박명학;박완용
    • 대한원격탐사학회지
    • /
    • 제25권1호
    • /
    • pp.11-20
    • /
    • 2009
  • 우리나라는 황사발생 빈도가 증가하고 특히 하절기에 강우 및 구름 발생이 잦아 위성원격탐사영상의 대기보정처리를 필요로 한다. 본 연구에서는 대기보정 전후의 클래스별 화소값 분포 변화를 비교하여 대기보정이 영상화소분류에 미치는 영향을 분석하였다. 실험에 사용된 영상은 LANDSAT-5 TM이고, 대기보정 모듈로는 상용 소프트웨어인 ATCOR, FLAASH와 인터넷에 공개된 COST 모델 3가지를 적용하였다. 실험 결과, 건물밀집 지역 영역에서 클래스 분리도가 향상되는 것으로 나타났다.

Land Use Classification of TM Imagery in Hilly Areas: Integration of Image Processing and Expert Knowledge

  • Ding, Feng;Chen, Wenhui;Zheng, Daxian
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1329-1331
    • /
    • 2003
  • Improvement of the classification accuracy is one of the major concerns in the field of remote sensing application research in recent years. Previous research shows that the accuracy of the conventional classification methods based only on the original spectral information were usually unsatisfied and need to be refined by manual edit. This present paper describes a method of combining the image processing, ancillary data (such as digital elevation model) and expert knowledge (especially the knowledge of local professionals) to improve the efficiency and accuracy of the satellite image classification in hilly land. Firstly, the Landsat TM data were geo-referenced. Secondly, the individual bands of the image were intensitynormalized and the normalized difference vegetation index (NDVI) image was also generated. Thirdly, a set of sample pixels (collected from field survey) were utilized to discover their corresponding DN (digital number) ranges in the NDVI image, and to explore the relationships between land use type and its corresponding spectral features . Then, using the knowledge discovered from previous steps as well as knowledge from local professionals, with the support of GIS technology and the ancillary data, a set of conditional statements were applied to perform the TM imagery classification. The results showed that the integration of image processing and spatial analysis functions in GIS improved the overall classification result if compared with the conventional methods.

  • PDF