• Title/Summary/Keyword: Landsat OLI

Search Result 51, Processing Time 0.025 seconds

Validation of the Radiometric Characteristics of Landsat 8 (LDCM) OLI Sensor using Band Aggregation Technique of EO-1 Hyperion Hyperspectral Imagery (EO-1 Hyperion 초분광 영상의 밴드 접합 기법을 이용한 Landsat 8 (LDCM) OLI 센서의 방사 특성 검증)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2013
  • The quality of satellite imagery should be improved and stabilized to satisfy numerous users. The radiometric characteristics of an optical sensor can be a measure of data quality. In this study, a band aggregation technique and spectral response function of hyperspectral images are used to simulate multispectral images. EO-1 Hyperion and Landsat-8 OLI images acquired with about 30 minutes difference in overpass time were exploited to evaluate radiometric coefficients of OLI. Radiance values of the OLI and the simulated OLI were compared over three subsets covered by different land types. As a result, the index of agreement shows over 0.99 for all VNIR bands although there are errors caused by space/time and sensors.

Analysis on the Effect of Spectral Index Images on Improvement of Classification Accuracy of Landsat-8 OLI Image

  • Magpantay, Abraham T.;Adao, Rossana T.;Bombasi, Joferson L.;Lagman, Ace C.;Malasaga, Elisa V.;Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.561-571
    • /
    • 2019
  • In this paper, we analyze the effect of the representative spectral indices, normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and normalized difference built-up index (NDBI) on classification accuracies of Landsat-8 OLI image.After creating these spectral index images, we propose five methods to select the spectral index images as classification features together with Landsat-8 OLI bands from 1 to 7. From the experiments we observed that when the spectral index image of NDVI or NDWI is used as one of the classification features together with the Landsat-8 OLI bands from 1 to 7, we can obtain higher overall accuracy and kappa coefficient than the method using only Landsat-8 OLI 7 bands. In contrast, the classification method, which selected only NDBI as classification feature together with Landsat-8 OLI 7 bands did not show the improvement in classification accuracies.

Unsupervised Classification of Landsat-8 OLI Satellite Imagery Based on Iterative Spectral Mixture Model (자동화된 훈련 자료를 활용한 Landsat-8 OLI 위성영상의 반복적 분광혼합모델 기반 무감독 분류)

  • Choi, Jae Wan;Noh, Sin Taek;Choi, Seok Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.53-61
    • /
    • 2014
  • Landsat OLI satellite imagery can be applied to various remote sensing applications, such as generation of land cover map, urban area analysis, extraction of vegetation index and change detection, because it includes various multispectral bands. In addition, land cover map is an important information to monitor and analyze land cover using GIS. In this paper, land cover map is generated by using Landsat OLI and existing land cover map. First, training dataset is obtained using correlation between existing land cover map and unsupervised classification result by K-means, automatically. And then, spectral signatures corresponding to each class are determined based on training data. Finally, abundance map and land cover map are generated by using iterative spectral mixture model. The experiment is accomplished by Landsat OLI of Cheongju area. It shows that result by our method can produce land cover map without manual training dataset, compared to existing land cover map and result by supervised classification result by SVM, quantitatively and visually.

Improving Accuracy of Land Cover Classification in River Basins using Landsat-8 OLI Image, Vegetation Index, and Water Index (Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선)

  • PARK, Ju-Sung;LEE, Won-Hee;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.98-106
    • /
    • 2016
  • Remote sensing is an efficient technology for observing and monitoring the land surfaces inaccessible to humans. This research proposes a methodology for improving the accuracy of the land cover classification using the Landsat-8 operational land imager(OLI) image. The proposed methodology consists of the following steps. First, the normalized difference vegetation index(NDVI) and normalized difference water index(NDWI) images are generated from the given Landsat-8 OLI image. Then, a new image is generated by adding both NDVI and NDWI images to the original Landsat-8 OLI image using the layer-stacking method. Finally, the maximum likelihood classification(MLC), and support vector machine(SVM) methods are separately applied to the original Landsat-8 OLI image and new image to identify the five classes namely water, forest, cropland, bare soil, and artificial structure. The comparison of the results shows that the utilization of the layer-stacking method improves the accuracy of the land cover classification by 8% for the MLC method and by 1.6% for the SVM method. This research proposes a methodology for improving the accuracy of the land cover classification by using the layer-stacking method.

Analysis of Vegetation Cover Fraction on Landsat OLI using NDVI (Landsat 8 OLI영상의 NDVI를 이용한 식생피복지수 분석)

  • Choi, Seokkeun;Lee, Soungki;Wang, Baio
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • The Vegetation cover is a significant factor to comprehend characteristics of the ground surface for meterological and hydrological models, which measure energy in the atmosphere or predict the runoff of ground surface. Deardorff introduced vegetation cover fraction to quantitatively comprehend the vegetation cover in 1978. After Deardorff, most of previous researches were conducted on low-resolution or high-resolution images, but only few researches on Landsat that are in medium-resolution images. Therefore, this study aims to investigate a way of calculating the vegetation cover fraction by using NDVI of Landsat images, which were hardly handled previously. For accurate vegetation cover fraction, we compared the evaluated parameters from this study with past vegetation cover fraction parameters that have been calculated for using NDVI of Landsat OLI images. The result of research was shown that NDVI is quite correlated with the vegetation fraction cover in the previous researches. In fact, RMSE of vegetation cover fraction values that obtained through the suggested parameters on this study showed the highest accuracy of 7.3% among all the cases.

High Resolution Ocean Color Products Estimation in Fjord of Svalbard, Arctic Sea using Landsat-8 OLI (Landsat-8 OLI를 이용한 북극해 스발바드 피요르드의 고해상도 Ocean Color Product 산출)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Hyun, Chang-Uk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.809-816
    • /
    • 2014
  • Ocean Color products have been used to understand marine ecosystem. In high latitude region, ice melting optically influences the ocean color products. In this study, we assessed optical properties in fjord around Svalbard Arctic sea, and estimated distribution of chlorophyll-a and suspended sediment by using high resolution satellite data, Landsat-8 Operational Land Imager (OLI). To estimate chlorophyll-a and suspended sediment concentrations, various regression models were tested with different band ratio. The regression models were not shown high correlation because of temporal difference between satellite data and in-situ data. However, model-derived distribution of ocean color products from OLI showed a possibility that fjord and coastal areas around Arctic Sea can be monitored with high resolution satellite data. To understand climate change pattern around Arctic Sea, we need to understand ice meting influences on marine ecosystem change. Results of this study will be used to high resolution monitoring of ice melting and its influences on the marine ecosystem change at high latitude. KOPRI (Korea Polar Research Institute) has been operated the Dasan station on Svalbard since 2002, and study was conducted using Arctic station.

Absolute Radiometric Calibration for KOMPSAT-3 AEISS and Cross Calibration Using Landsat-8 OLI

  • Ahn, Hoyong;Shin, Dongyoon;Lee, Sungu;Choi, Chuluong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.291-302
    • /
    • 2017
  • Radiometric calibration is a prerequisite to quantitative remote sensing, and its accuracy has a direct impact on the reliability and accuracy of the quantitative application of remotely sensed data. This paper presents absolute radiometric calibration of the KOMPSAT-3 (KOrea Multi Purpose SATellite-3) and cross calibration using the Landsat-8 OLI (Operational Land Imager). Absolute radiometric calibration was performed using a reflectance-based method. Correlations between TOA (Top Of Atmosphere) radiances and the spectral band responses of the KOMPSAT-3 sensors in Goheung, South Korea, were significant for multispectral bands. A cross calibration method based on the Landsat-8 OLI was also used to assess the two sensors using near simultaneous image pairs over the Libya-4 PICS (Pseudo Invariant Calibration Sites). The spectral profile of the target was obtained from EO-1 (Earth Observing-1) Hyperion data over the Libya-4 PICS to derive the SBAF (Spectral Band Adjustment Factor). The results revealed that the TOA radiance of the KOMPSAT-3 agree with Landsat-8 within 5.14% for all bands after applying the SBAF. The radiometric coefficient presented here appears to be a good standard for maintaining the optical quality of the KOMPSAT-3.

Comparison of Normalization Difference Vegetation Index due to difference in Landsat satellite sensor (Landsat 위성의 센서 차이에 의한 정규식생분포지수 비교)

  • Kwak, Jaehwan;Bhang, Kon Joon;Lee, Jin-Duk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.135-136
    • /
    • 2014
  • 지구온난화에 따른 이상기후현상을 해결하기 위해 인공위성영상을 이용한 식생의 변화유무와 특성파악이 중요하다. 특히, 인공위성의 근적외선 영역과 가시광선 영역을 이용한 정규식생분포지수는 식생의 활력도를 파악하고 변화유무를 판단하는 지표로서 많이 사용되고 있다. 하지만, 최근 발사된 Landsat 8 OLI의 경우 정규식생분포지수에 영향을 주는 근적외선 밴드의 파장대역이 기존의 TM/ETM+ 위성의 근적외선 밴드의 파장대역보다 감소하였다. 또한 이러한 파장대역 변화에 의한 정규식생분포지수의 차이에 대해서 공식적으로 연구한 사례가 없다. 그러므로 본 연구는 Landsat 8 OLI 위성영상과 Landsat 7 ETM+ 위성영상을 식생이 활발한 여름철(9월)과 그렇지 않은 겨울철(1월)의 영상을 각각 취득하여, 식생, 도심지, 도로, 농경지, 나지의 5가지 항목으로 분류하여 각각의 정규식생분포지수를 비교해보고 상관관계분석을 시도하였다.

  • PDF

An Implementation of OTB Extension to Produce TOA and TOC Reflectance of LANDSAT-8 OLI Images and Its Product Verification Using RadCalNet RVUS Data (Landsat-8 OLI 영상정보의 대기 및 지표반사도 산출을 위한 OTB Extension 구현과 RadCalNet RVUS 자료를 이용한 성과검증)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.449-461
    • /
    • 2021
  • Analysis Ready Data (ARD) for optical satellite images represents a pre-processed product by applying spectral characteristics and viewing parameters for each sensor. The atmospheric correction is one of the fundamental and complicated topics, which helps to produce Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance from multi-spectral image sets. Most remote sensing software provides algorithms or processing schemes dedicated to those corrections of the Landsat-8 OLI sensors. Furthermore, Google Earth Engine (GEE), provides direct access to Landsat reflectance products, USGS-based ARD (USGS-ARD), on the cloud environment. We implemented the Orfeo ToolBox (OTB) atmospheric correction extension, an open-source remote sensing software for manipulating and analyzing high-resolution satellite images. This is the first tool because OTB has not provided calibration modules for any Landsat sensors. Using this extension software, we conducted the absolute atmospheric correction on the Landsat-8 OLI images of Railroad Valley, United States (RVUS) to validate their reflectance products using reflectance data sets of RVUS in the RadCalNet portal. The results showed that the reflectance products using the OTB extension for Landsat revealed a difference by less than 5% compared to RadCalNet RVUS data. In addition, we performed a comparative analysis with reflectance products obtained from other open-source tools such as a QGIS semi-automatic classification plugin and SAGA, besides USGS-ARD products. The reflectance products by the OTB extension showed a high consistency to those of USGS-ARD within the acceptable level in the measurement data range of the RadCalNet RVUS, compared to those of the other two open-source tools. In this study, the verification of the atmospheric calibration processor in OTB extension was carried out, and it proved the application possibility for other satellite sensors in the Compact Advanced Satellite (CAS)-500 or new optical satellites.

Spectral Characteristics of Hydrothermal Alteration in Zuru, NW Nigeria

  • Aisabokhae, Joseph;Tampul, Hamman
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.535-544
    • /
    • 2019
  • This study demonstrated the ability of a Landsat-8 OLI multispectral data to identify and delineate hydrothermal alteration zones around auriferous prospects within the crystalline basement, North-western Nigeria. Remote sensing techniques have been widely used in lithological, structural discrimination and alteration rock delineation, and in general geological studies. Several artisanal mining activities for gold deposit occur in the surrounding areas within the basement complex and the search for new possible mineralized zones have heightened in recent times. Systematic Landsat-8 OLI data processing methods such as colour composite, band ratio and minimum noise fraction were used in this study. Colour composite of band 4, 3 and 2 was displayed in Red-Green-Blue colour image to distinguish lithologies. Band ratio ${\frac{4}{2}}$ image displayed in red was used to highlight ferric-ion bearing minerals(hematite, goethite, jarosite) associated with hydrothermal alteration, band ratio ${\frac{5}{6}}$ image displayed in green was used to highlight ferrous-ion bearing minerals such as olivine, amphibole and pyroxenes, while ratio ${\frac{6}{7}}$ image displayed in blue was used to highlight clay minerals, micas, talc-carbonates, etc. Band rationing helped to reduce the topographic illumination effect within images. The result of this study showed the distribution of the lithological units and the hydrothermal alteration zone which can be further prospected for mineral reserves.