• Title/Summary/Keyword: Landsat/TM

Search Result 532, Processing Time 0.019 seconds

Temporal Analysis on the Transition of Land Cover Change and Growth of Mining Area Using Landsat TM/+ETM Satellite Imagery in Tuv, Mongolia (Landsat TM/+ETM 위성영상을 이용한 몽골 Tuv지역의 토지피복변화 및 광산지역확대 추이분석)

  • Erdenesumbee, Suld;Cho, Misu;Cho, Gisung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.451-457
    • /
    • 2014
  • Recently, the land degradation and pasture erosion in Tuv, located around Ulaanbaatar of Mongolia, have been increasing sharply due to escalating developments of mining sectors, well as the density of populations. Because of that, we have chosen the urban and mining area of Tuv for our study target. During the study, the temporal changes of land cover in Tuv, Mongolia were observed by the Landsat TM/+ETM satellite images from 2001 to 2009 that provided the fundamental dataset to apply NDVI and K-Mean algorithm of Unsupervised Classification and Maximum likelihood classification(MLC) of Supervised Classification in order to conclude in land cover change analyzation. The result of our study implies that the growth of mining area, the climate change, and the density of population led the land degradation to desertification.

OBSERVATION OF MICROPHYTOBENTHIC BIOMASS IN HAMPYEONG BAY USING LANDSAT TM IMAGERY

  • Choi, Jae-Won;Won, Joon-Sun;Lee, Yoon-Kyung;Kwon, Bong-Oh;Koh, Chul-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.441-444
    • /
    • 2005
  • The goal of this study is to investigate the relationship between microphytobenthic biomass and normalized vegetation index obtained from Landsat TM images. Monitoring a seasonal change of microphytobenthic biomass in the sand bar is specifically focused. Since the study area, Hampyeong Bay, was difficult to approach, we failed to obtain ground truths simultaneously on satellite image acquisition. Instead, chlorophyll-a concentration in surface top layer was measured on different dates for microphytobenthic biomass. Although data were acquired on different dates, a correlation between the field and satellite images was calculated for investigating general trends of seasonal change. NDVI and tasseled cap transformed images were also used to review the variation of microphytobenthic biomass by using Landsat TM and ETM+ images. Atmosphere effects were corrected by applying COST model. Seaweeds were also flouring in the same season of microphytobentic blooming. Songseok-ri area was minimally affected by seaweeds from February to May, and selected as a test site. NDVI value was classified into high-, moderate-, and low-grade. It was well developed over fme-grained sediments and rapidly reduced from May to November over sand bar. In this bay, correlation between grain size and microphytobenthic biomass was clearly seen. From the classified NDVI and tasseled cap transformed data, we finally constructed spatial distribution and seasonal variation maps of microphytobenthic biomass.

  • PDF

Classification of Tidal Flat Deposits in the Cheonsu-bay using Landsat TM Data and Surface Sediment Analysis (Landsat TM 자료와 표충퇴적물 분석을 통한 천수만 간석지 퇴적물 분류)

  • Jang, Dong-Ho;Chi, Kwang-Hoon;Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.4
    • /
    • pp.247-258
    • /
    • 2002
  • This study aimed at verifying the grain-sized distribution of surface deposits in a tidal flat using multi-spectral Landsat TM. In this study, we employed the grain-sized analysis, PCA and unsupervised classification techniques for analyzing the distribution of deposits. As a result in this study, the unsupervised classification method using PCA image was found to be most useful in classifying tidal flat deposits using satellite data. This method is considerably effective in analyzing not only the aspects of distribution in terms of accumulated deposits and erosion, but also the changes in seaside topography and shoreline. The grain-sized distribution analysis indicates that the mud flat inside the Cheonsu-bay tidal flat is distributed, the mixed flat located in the middle, and the sand flat distributed near the sea. The sand flat is dominant around the southern part of Seomot isle and its beach. On the other hand, the mud and mixed flat is dominant on the western part. Likewise, the western coast of Seomot isle and its beach is significantly affected by waves facing the offshore. However, the eastern side of the bay could be a site for the evolution of tidal flat made of fine materials where it is less affected by ocean waves. These results show that multi-spectral satellite data are effective for the classification of distribution materials and environmental impact assessment and continuous monitoring. In particular, the research on environmental deposits can provide important decision-supporting information for decision-making on seaside development, by analyzing the progress of deposits and environmental changes.

Estimation of Aboveground Biomass Carbon Stock Using Landsat TM and Ratio Images - $k$NN algorithm and Regression Model Priority (Landsat TM 위성영상과 비율영상을 적용한 지상부 탄소 저장량 추정 - $k$NN 알고리즘 및 회귀 모델을 중점적으로)

  • Yoo, Su-Hong;Heo, Joon;Jung, Jae-Hoon;Han, Soo-Hee;Kim, Kyoung-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2011
  • Global warming causes the climate change and makes severe damage to ecosystem and civilization Carbon dioxide greatly contributes to global warming, thus many studies have been conducted to estimate the forest biomass carbon stock as an important carbon storage. However, more studies are required for the selection and use of technique and remotely sensed data suitable for the carbon stock estimation in Korea In this study, the aboveground forest biomass carbon stocks of Danyang-Gun in South Korea was estimated using $k$NN($k$-Nearest Neighbor) algorithm and regression model, then the results were compared. The Landsat TM and 5th NFI(National Forest Inventory) data were prepared, and ratio images, which are effective in topographic effect correction and distinction of forest biomass, were also used. Consequently, it was found that $k$NN algorithm was better than regression model to estimate the forest carbon stocks in Danyang-Gun, and there was no significant improvement in terms of accuracy for the use of ratio images.

Change Vector Analysis : Change detection of flood area using LANDSAT TM Data (LANDSAT TM을 이용한 홍수지역의 변화탐지 : Change Vector Analysis 방법을 중심으로)

  • Yoon, Geun-Won;Yun, Young-Bo;Park, Jong-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.47-52
    • /
    • 2003
  • Change detection and analysis is a powerful application of remote sensing, in that the spectral resolution of multi-band sensors can be used to advantage in monitoring both significant and subtle land cover changes over time. In this study, the LANDSAT TM data was used to detect the change areas affected by flood from a heavy rainfall. The study area is the Nakdong River located in the Korea peninsular. Among the several change detection techniques, change vector analysis(CVA), principle component analysis(PCA) and image difference approach are utilized in this paper. CVA uses any number of spectral bands from multi-date satellite data to produce change image that yield information of the magnitude and direction of differences pixel values. And accuracy assessment was carried out with a change image produced from three techniques. In result, CVA was found to be the most accurate for detecting areas affected by flood. CVA with the overall accuracy and Kappa coefficient of 97.27 percent and 94.45 percent, respectively.

  • PDF

A Study on the Preparation Method of Fruit Cropping Distribution Map using Satellite Images and GIS (위성영상과 GIS를 이용한 과수재배 분포도 작성 기법에 관한 연구)

  • Jo, Myung-Hee;Bu, Ki-Dong;Lee, Jung-Hyoup;Lee, Kwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.73-86
    • /
    • 2000
  • This study focused on extracting an efficient method in the fruit cropping distribution mapping with various classification methods using multi-temporal satellite images and Geographic Information Systems(GIS). For this study, multi-temporal Landsat TM images, in observation data and existing fruit cropping area statistics were used to compare and analyze the properties of fruit cropping and seasonal distribution per classification method. As a result, this study concludes that Maximum Likelihood Method with earlier autumn satellite image was most efficient for the fruit cropping mapping using Landsat TM image. In addition, it was clarified that cropping area per administrative boundary was prepared and distribution pattern was identified efficiently using GIS spatial analysis.

  • PDF

Comparison of Digital Number Distribution Changes of Each Class according to Atmospheric Correction in LANDSAT-5 TM (LANDSAT-5 TM 영상의 대기보정에 따른 클래스별 화소값 분포 변화 비교)

  • Jung, Tae-Woong;Eo, Yang-Dam;Jin, Tailie;Lim, Sang-Boem;Park, Doo-Youl;Park, Hwang-Soo;Piao, Minghe;Park, Wan-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Due to increasing frequency of yellow dust, not to mention high rate of precipitation and cloud formation in summer season of Korea, atmospheric correction of satellite remote sensing is necessary. This research analyzes the effect of atmospheric correction has on imagery classification by comparing DN distribution before and after atmospheric correction. The image used in the research is LANDSAT-5 TM. As for atmospheric correction module, commercial product ATCOR, FLAASH as well as COST model released on the internet, were used. The result of experiment shows that class separability increased in building areas.

Micro-Landform Classification and Topographic Property of Tidal Flat in Julpo-Bay Using Satellite Image (위성영상을 이용한 줄포만 간석지의 미지형 분류와 지형적특성)

  • 조명희;조화룡
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.217-225
    • /
    • 1999
  • Through the ISODATA method of unsupervised classification, the micro-landform of Julpo-Bay tidal flat was classified into mudflat, mixedflat, and sandflat using Landsat TM image. Each showed an apparent differences in its topographical characteristics and grain size composition. Mudflat occupied innermost part of the tidal flat, sandflat located closest to the entrance of the bay and mixed flat in the center is. For example, mudlflats are formed with flat faces and tidal channel. Topographically, mudflat consist of tidal channels and flat intermediate surface. Its average relief of them is about 2 meter. Meanwhile, sandflat comprised very flat landform with well-developed ripple marks of less than 10cm average relief. And Mixed flat stood in between. In addition, Out of 7 bands of Landsat TM images, band 5 and 7 provided the highest power level for discrimination between micro-landforms of the tidal flat. Band 4 showed a clear boundary between the land and tidal flat, and band 3 did its share by showing well a boundary between the sea surface and the tidal flat.

Estimating the Variations of Tidal Flat Areas after the Seawall Construction from Topographic Maps, Hydrographic Charts, and Satellite Images (지형도, 해도 및 위성영상을 이용한 방조제 축조 후의 간석지 면적 변화 추정)

  • Gang, Mun-Seong;Park, Seung-U;Kim, Sang-Min
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.597-604
    • /
    • 2001
  • The objective of the paper was to estimate the changes in acreages of tidal flats after the seawall construction at the Asan Bay and the Chunsu Bay from topographic maps, hydrographic charts, and Landsat TM images. The tidal floats from topographic maps published in one year differ significantly from that in the other, which appears to be attributed to the tide levels at the time of photographing. The hydrographic charts showed that tidal flats increase at rates of 22.3 ha/yr at the Asan Bay and 56.6 ha/yr at the Chunsu Bay after the dike construction. Applying the ISODATA method of unsupervised classifications for the Landsat TM images, the tidal flats were identified, and the resulting acreages for each image estimated. The resulting tidal flats increased at the rates of 21.3 ha/yr at the Asan Bay and 47.3 ha/yr at the Chunsu Bay during twelve years after the dike construction. It was found that the rates of the annual increases from the two data are very close and the differences result from the coastal lines at the charts and the TM images.

  • PDF

Application of Landsat TM/ETM+ Images to Snow Variations Detection by Volcanic Activities at Southern Volcanic Zone, Chile (Landsat TM/ETM+ 위성영상을 활용한 칠레 Southern Volcanic Zone의 화산과 적설변화와의 상관성 연구)

  • Kim, Jeong-Cheol;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.287-299
    • /
    • 2017
  • The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, including the Mt.Villarrica and Mt.Llaima, and the two volcanoes are covered with snow at the top of Mountain. The purpose of this study is to analyze the relationship between the ice caps and the volcanic activity of the two volcanoes for 25 years by using the satellite image data are available in a time series. A total of 60 Landsat-5 TM and Landsat-7 ETM + data were used for the study from September 1986 to February 2011. Using NDSI (Normalized Difference Snow Index) algorithm and SRTM DEM, snow cover and snowline were extracted. Finally, the snow cover area, lower-snowline, and upper-snowline, which are quantitative indicators of snow cover change, were directly or indirectly affected by volcanic activity, were extracted from the satellite images. The results show that the volcanic activity of Villarrica volcano is more than 55% when the snow cover is less than 20 and the lower-snowline is 1,880 m in Llaima volcano. In addition, when the upper-snowline of the two volcanoes is below -170m, it can be confirmed that the volcano is differentiated with a probability of about 90%. Therefore, the changes in volcanic snowfall are closely correlated with volcanic activity, and it is possible to indirectly deduce volcanic activity by monitoring the snow.