• Title/Summary/Keyword: Landmark information

Search Result 173, Processing Time 0.023 seconds

A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model (Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구)

  • Kim, Dong-Ju;Shin, Jeong-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • This paper introduces an appearance-based facial expression recognition method using ASM landmarks which is used to acquire a detailed face region. In particular, EHMM-based algorithm and SVM classifier with histogram feature are employed to appearance-based facial expression recognition, and performance evaluation of proposed method was performed with CK and JAFFE facial expression database. In addition, performance comparison was achieved through comparison with distance-based face normalization method and a geometric feature-based facial expression approach which employed geometrical features of ASM landmarks and SVM algorithm. As a result, the proposed method using ASM-based face normalization showed performance improvements of 6.39% and 7.98% compared to previous distance-based face normalization method for CK database and JAFFE database, respectively. Also, the proposed method showed higher performance compared to geometric feature-based facial expression approach, and we confirmed an effectiveness of proposed method.

The Background of the Formation of the Elevated Water Storage Tank Landscape in the Western Region of Jeju Island (제주도 서부 지역 고가수조 경관의 형성배경)

  • Kim, Man-Kyu;Park, Jong-Chul;Lee, Seong-Woo
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.6
    • /
    • pp.623-634
    • /
    • 2010
  • The elevated water storage tanks highly crowded in the western region in Jeju island is an important landmark of Jeju island. This study examines the reasons that the elevated water storage tanks appeared in a high density. After examination, this study found that the elevated water storage tanks formed under the influences of climate, hydrogeologic structure, soil, topography and land use. In particular, the elevated water storage tanks in Jeju are closely related to the crapping system with which water has to be supplied using sprinkler due to well drained soil and hydrogeological characteristics. The results of this study show that elevated water storage tank landscape in the western region of Jeju island is an agricultural landscape particularly made in the course of farmers' adaptation to the natural environment of Jeju island.

  • PDF

The Future of Workplace in Vertical Cities: Hanging Gardens, Roof Terraces and Vertical Plazas

  • Reinke, Stephan C.
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • As the workplace evolves in our vertical cities, the need for "think spaces" and the public realm to meet, create and innovate will become integral to tall buildings. These people places are designed to address the social challenges and enhance the co-working environments which are emerging in the dense urban context of our future cities. The design of sky terraces and the "spaces between" offer a greener, more humane and smarter work environment for the future. The public realm should no longer be held down, fixed to the ground plane, but rather become part and parcel of the upper levels of our workplace centers. These collective spaces in our workplace centers must provide a three dimensional matrix of connected and identifiable platforms to leverage the open and progressive future way of working. This will enable social networking and idea sharing, and create multi-dimensional, multi-level business incubators for innovation and creativity. The BCO ( British Council of Offices) has performed a landmark Wellness Matters Report which provides an exemplary roadmap for the future of the workplace. Our future vertical cities must also provide for serendipity in the workplace; a key attribute to drive the information exchange and collaboration that are proven to provide positive and progressive business outcomes. In addition to demonstrating examples of existing built work and the concept of the integrated vertical public realm, the presentation also will consider and define wellness in the workplace as a critical factor in our design strategies and our future workplace environments Hanging Gardens, Roof Terraces and the Vertical Plazas; designed for interchange, wellness, animation and collaboration.

Morphologic Diversities of Sacral Canal in Children;Three-Dimensional Computed Tomographic Study

  • Kim, Dae Wook;Lee, Seung Jun;Choi, Eun Joo;Lee, Pyung Bok;Jo, Young Hyun;Nahm, Francis Sahngun
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • Background: Caudal block is a common technique in children for reducing postoperative pain, and there have been several reports on the variations of the sacral canal in children. However, previous studies have mainly focused on the needle trajectory for caudal block, and there is limited information on the structural variations of the sacrum in children. The purpose of this study was to analyze the anatomic variations of sacral canals in children. Methods: Three-dimensional computed tomographic images were analyzed. The data from the images included (1) fusion of the sacral vertebral laminae and the sacral intervertebral space (2) existence of the sacral cornua and (3) the types of sacral hiatus. The types of sacral hiatus were classified into 3 groups: group I (fusion of S3 or S4 vertebral laminae), group II (unfused vertebral arch with the distance of the S3 and S4 vertebral laminae < 50% of the distance between the cornua), and group III (unfused vertebral arch with the distance of the S3 or S4 vertebral laminae ${\geq}50%$ of the distance between the cornua). Results: A total of 143 children were included in this study. All of the sacral vertebral arches were not fused in 22 children (15.4%). Cornua were not identified bilaterally in 5 (3.5%) and unilaterally in 6 (4.2%) children. In the sacral hiatus, group II and group III were identified in 22 (15.4%) and 31 (21.7%) children, respectively. Conclusions: The sacral canal has various anatomical variations in children. Careful attention must be paid to identify the correct anatomic landmark.

A Driver's Condition Warning System using Eye Aspect Ratio (눈 영상비를 이용한 운전자 상태 경고 시스템)

  • Shin, Moon-Chang;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.349-356
    • /
    • 2020
  • This paper introduces the implementation of a driver's condition warning system using eye aspect ratio to prevent a car accident. The proposed driver's condition warning system using eye aspect ratio consists of a camera, that is required to detect eyes, the Raspberrypie that processes information on eyes from the camera, buzzer and vibrator, that are required to warn the driver. In order to detect and recognize driver's eyes, the histogram of oriented gradients and face landmark estimation based on deep-learning are used. Initially the system calculates the eye aspect ratio of the driver from 6 coordinates around the eye and then gets each eye aspect ratio values when the eyes are opened and closed. These two different eye aspect ratio values are used to calculate the threshold value that is necessary to determine the eye state. Because the threshold value is adaptively determined according to the driver's eye aspect ratio, the system can use the optimal threshold value to determine the driver's condition. In addition, the system synthesizes an input image from the gray-scaled and LAB model images to operate in low lighting conditions.

A Moving Camera Localization using Perspective Transform and Klt Tracking in Sequence Images (순차영상에서 투영변환과 KLT추적을 이용한 이동 카메라의 위치 및 방향 산출)

  • Jang, Hyo-Jong;Cha, Jeong-Hee;Kim, Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.163-170
    • /
    • 2007
  • In autonomous navigation of a mobile vehicle or a mobile robot, localization calculated from recognizing its environment is most important factor. Generally, we can determine position and pose of a camera equipped mobile vehicle or mobile robot using INS and GPS but, in this case, we must use enough known ground landmark for accurate localization. hi contrast with homography method to calculate position and pose of a camera by only using the relation of two dimensional feature point between two frames, in this paper, we propose a method to calculate the position and the pose of a camera using relation between the location to predict through perspective transform of 3D feature points obtained by overlaying 3D model with previous frame using GPS and INS input and the location of corresponding feature point calculated using KLT tracking method in current frame. For the purpose of the performance evaluation, we use wireless-controlled vehicle mounted CCD camera, GPS and INS, and performed the test to calculate the location and the rotation angle of the camera with the video sequence stream obtained at 15Hz frame rate.

Vision-Based Self-Localization of Autonomous Guided Vehicle Using Landmarks of Colored Pentagons (컬러 오각형을 이정표로 사용한 무인자동차의 위치 인식)

  • Kim Youngsam;Park Eunjong;Kim Joonchoel;Lee Joonwhoan
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.387-394
    • /
    • 2005
  • This paper describes an idea for determining self-localization using visual landmark. The critical geometric dimensions of a pentagon are used here to locate the relative position of the mobile robot with respect to the pattern. This method has the advantages of simplicity and flexibility. This pentagon is also provided nth a unique identification, using invariant features and colors that enable the system to find the absolute location of the patterns. This algorithm determines both the correspondence between observed landmarks and a stored sequence, computes the absolute location of the observer using those correspondences, and calculates relative position from a pentagon using its (ive vortices. The algorithm has been implemented and tested. In several trials it computes location accurate to within 5 centimeters in less than 0.3 second.

Face Super-Resolution using Adversarial Distillation of Multi-Scale Facial Region Dictionary (다중 스케일 얼굴 영역 딕셔너리의 적대적 증류를 이용한 얼굴 초해상화)

  • Jo, Byungho;Park, In Kyu;Hong, Sungeun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.608-620
    • /
    • 2021
  • Recent deep learning-based face super-resolution (FSR) works showed significant performances by utilizing facial prior knowledge such as facial landmark and dictionary that reflects structural or semantic characteristics of the human face. However, most of these methods require additional processing time and memory. To solve this issue, this paper propose an efficient FSR models using knowledge distillation techniques. The intermediate features of teacher network which contains dictionary information based on major face regions are transferred to the student through adversarial multi-scale features distillation. Experimental results show that the proposed model is superior to other SR methods, and its effectiveness compare to teacher model.

Design for Back-up of Ship's Navigation System using UAV in Radio Frequency Interference Environment (전파간섭환경에서 UAV를 활용한 선박의 백업항법시스템 설계)

  • Park, Sul Gee;Son, Pyo-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.289-295
    • /
    • 2019
  • Maritime back-up navigation system in port approach requires a horizontal accuracy of 10 meters in IALA (International Association of Lighthouse Authorities) recommendations. eLoran which is a best back-up navigation system that satisfies accuracy requirement has poor navigation performance depending signal environments. Especially, noise caused by multipath and electronic devices around eLoran antenna affects navigation performance. In this paper, Ship based Navigation Back-up system using UAV on Interference is designed to satisfy horizontal accuracy requirement. To improve the eLoran signal environment, UAVs are equipped with camera, IMU sensor and eLoran antenna and receivers. This proposed system is designed to receive eLoran signal through UAV-based receiver and control UAV's position and attitude within Landmark around area. The ship-based positioning using eLoran signal, vision and attitude information received from UAV satisfy resilient and robust navigation requirements.

Development of the Whole Body 3-Dimensional Topographic Radiotherapy System (3차원 전신 정위 방사선 치료 장치의 개발)

  • Jung, Won-Kyun;Lee, Byung-Yong;Choi, Eun-Kyung;Kim, Jong-Hoon;An, Seung-Do;Lee, Seok;Min, Chul-Ki;Park, Cham-Bok;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.63-71
    • /
    • 1999
  • For the purpose of utilization in 3-D conformal radiotherapy and whole body radiosurgery, the Whole Body 3-Dimensional Topographic Radiation Therapy System has been developed. Whole body frame was constructed in order to be installed on the couch. Radiopaque catheters were engraved on it for the dedicated coordinate system and a MeV-Green immobilizer was used for the patient setup by the help of side panels and plastic rods. By designing and constructing the whole body frame in this way, geometrical limitation to the gantry rotation in 3-D conformal radiotherapy could be minimized and problem which radiation transmission may be altered in particular incident angles was solved. By analyzing CT images containing information of patient setup with respect to the whole body frame, localization and coordination of the target is performed so that patient setup error may be eliminated between simulation and treatment. For the verification of setup, the change of patient positioning is detected and adjusted in order to minimize the setup error by means of comparison of the body outlines using 3 CCTV cameras. To enhance efficiency of treatment procedure, this work can be done in real time by watching the change of patient setup through the monitor. The method of image subtraction in IDL (Interactive Data Language) was used to visualize the change of patient setup. Rotating X-ray system was constructed for detecting target movement due to internal organ motion. Landmark screws were implanted either on the bones around target or inside target, and variation of target location with respect to markers may be visualized in order to minimize internal setup error through the anterior and the lateral image information taken from rotating X-ray system. For CT simulation, simulation software was developed using IDL on GUI(Graphic User Interface) basis for PC and includes functions of graphic handling, editing and data acquisition of images of internal organs as well as target for the preparation of treatment planning.

  • PDF