• Title/Summary/Keyword: Landmark extraction

Search Result 27, Processing Time 0.024 seconds

Landmark Recognition Method based on Geometric Invariant Vectors (기하학적 불변벡터기반 랜드마크 인식방법)

  • Cha Jeong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.3 s.35
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, we propose a landmark recognition method which is irrelevant to the camera viewpoint on the navigation for localization. Features in previous research is variable to camera viewpoint, therefore due to the wealth of information, extraction of visual landmarks for positioning is not an easy task. The proposed method in this paper, has the three following stages; first, extraction of features, second, learning and recognition, third, matching. In the feature extraction stage, we set the interest areas of the image. where we extract the corner points. And then, we extract features more accurate and resistant to noise through statistical analysis of a small eigenvalue. In learning and recognition stage, we form robust feature models by testing whether the feature model consisted of five corner points is an invariant feature irrelevant to viewpoint. In the matching stage, we reduce time complexity and find correspondence accurately by matching method using similarity evaluation function and Graham search method. In the experiments, we compare and analyse the proposed method with existing methods by using various indoor images to demonstrate the superiority of the proposed methods.

  • PDF

Automatic Extraction of Stable Visual Landmarks for a Mobile Robot under Uncertainty (이동로봇의 불확실성을 고려한 시각 랜드마크의 자동 추출)

  • 문인혁;조강현;윤형로
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.264-264
    • /
    • 2000
  • In this paper, we propose a method to automatically extract stable visual landmarks from observed data for a mobile robot with stereo vision system. The robot selects as stable landmarks vertical line segments which are distinct and on planar surfaces, because they are expected to be observed reliably from various view-points. When the robot moves, it uses several, less uncertain landmarks for estimating its motion. Experimental results in real scenes show the validity of the proposed method.

  • PDF

Three‐Dimensional Automatic Measurement Extraction Algorithms for Neck‐base Part of Females in Their Twenties (20대 여성의 목밑둘레 부위에 대한 3차원 자동 측정 알고리즘)

  • Hwang, Keun-Young;Nam, Yun-Ja;Park, Jae-Kyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • The purpose of this study is to suggest computer assisted neck-base's landmark identification algorithms and measurement extraction methods from three-dimensional human scan data. So we developed the algorithms for automatic identification of landmarks related to the neck-base types. The subjects were 58 women $18{\sim}24$ years of age. Their body were measured directly and indirectly by using camera and three-dimensional body scanner. They were measured during the months of October in 2001. Based on the characters of classified neck-base types, algorithms for the automatic identification of landmarks and methods of automatic measurement are developed. The three-dimensional automatic measuring program is made by $C^{++}$ language. Using this program, 4 landmarks are identified and 6 items are measured. In the verifying the precision of automatic measurement, the height measurements(cervicale, side neck point, front neck point) were relatively accurate, but neck-base width measurement was measured wide.

Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow (ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법)

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.512-517
    • /
    • 2011
  • In this paper, we propose an Active Shape Model (ASM) and Lucas-Kanade (LK) optical flow-based feature extraction and analysis method for analyzing the emotional features from facial images. Considering the facial emotion feature regions are described by Facial Action Coding System, we construct the feature-related shape models based on the combination of landmarks and extract the LK optical flow vectors at each landmarks based on the centre pixels of motion vector window. The facial emotion features are modelled by the combination of the optical flow vectors and the emotional states of facial image can be estimated by the probabilistic estimation technique, such as Bayesian classifier. Also, we extract the optimal emotional features that are considered the high correlation between feature points and emotional states by using common spatial pattern (CSP) analysis in order to improvise the operational efficiency and accuracy of emotional feature extraction process.

Face Recognition Based on Facial Landmark Feature Descriptor in Unconstrained Environments (비제약적 환경에서 얼굴 주요위치 특징 서술자 기반의 얼굴인식)

  • Kim, Daeok;Hong, Jongkwang;Byun, Hyeran
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.666-673
    • /
    • 2014
  • This paper proposes a scalable face recognition method for unconstrained face databases, and shows a simple experimental result. Existing face recognition research usually has focused on improving the recognition rate in a constrained environment where illumination, face alignment, facial expression, and background is controlled. Therefore, it cannot be applied in unconstrained face databases. The proposed system is face feature extraction algorithm for unconstrained face recognition. First of all, we extract the area that represent the important features(landmarks) in the face, like the eyes, nose, and mouth. Each landmark is represented by a high-dimensional LBP(Local Binary Pattern) histogram feature vector. The multi-scale LBP histogram vector corresponding to a single landmark, becomes a low-dimensional face feature vector through the feature reduction process, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis). We use the Rank acquisition method and Precision at k(p@k) performance verification method for verifying the face recognition performance of the low-dimensional face feature by the proposed algorithm. To generate the experimental results of face recognition we used the FERET, LFW and PubFig83 database. The face recognition system using the proposed algorithm showed a better classification performance over the existing methods.

Active Shape Model with Directional Profile (방향성 프로파일을 적용한 능동형태 모델)

  • Kim, Jeong Yeop
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1720-1728
    • /
    • 2017
  • Active shape model is widely used in the field of image processing especially on arbitrary meaningful shape extraction from single gray level image. Cootes et. al. showed efficient detection of variable shape from image by using covariance and mean shape from learning. There are two stages of learning and testing. Hahn applied enhanced shape alignment method rather than using Cootes's rotation and scale scheme. Hahn did not modified the profile itself. In this paper, the method using directional one dimensional profile is proposed to enhance Cootes's one dimensional profile and the shape alignment algorithm of Hahn is combined. The performance of the proposed method was superior to Cootes's and Hahn's. Average landmark estimation error for each image was 27.72 pixels and 39.46 for Cootes's and 33.73 for Hahn's each.

Real-Time Arbitrary Face Swapping System For Video Influencers Utilizing Arbitrary Generated Face Image Selection

  • Jihyeon Lee;Seunghoo Lee;Hongju Nam;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • This paper introduces a real-time face swapping system that enables video influencers to swap their faces with arbitrary generated face images of their choice. The system is implemented as a Django-based server that uses a REST request to communicate with the generative model,specifically the pretrained stable diffusion model. Once generated, the generated image is displayed on the front page so that the influencer can decide whether to use the generated face or not, by clicking on the accept button on the front page. If they choose to use it, both their face and the generated face are sent to the landmark extraction module to extract the landmarks, which are then used to swap the faces. To minimize the fluctuation of landmarks over time that can cause instability or jitter in the output, a temporal filtering step is added. Furthermore, to increase the processing speed the system works on a reduced set of the extracted landmarks.

GPU based Fast Recognition of Artificial Landmark for Mobile Robot (주행로봇을 위한 GPU 기반의 고속 인공표식 인식)

  • Kwon, Oh-Sung;Kim, Young-Kyun;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.688-693
    • /
    • 2010
  • Vision based object recognition in mobile robots has many issues for image analysis problems with neighboring elements in dynamic environments. SURF(Speeded Up Robust Features) is the local feature extraction method of the image and its performance is constant even if disturbances, such as lighting, scale change and rotation, exist. However, it has a difficulty of real-time processing caused by representation of high dimensional vectors. To solve th problem, execution of SURF in GPU(Graphics Processing Unit) is proposed and implemented using CUDA of NVIDIA. Comparisons of recognition rates and processing time for SURF between CPU and GPU by variation of robot velocity and image sizes is experimented.

A Study on the Parametric Design Process for Form Generation to Review Planning Factors of Irregular-Shaped High-rise Buildings (비정형 초고층건물의 계획요소 검토가 가능한 형태생성 파라메트릭 디자인 프로세스에 관한 연구)

  • Im, Ja-Eun;Park, Sang-Min
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.161-168
    • /
    • 2019
  • The use of various digital tools makes freeform modeling possible. At the same time, with the development of structural and construction technologies, Free-Form Architecture are beginning to be implemented realized, as the desired data extraction such as the size and coordinate points of the members is possible. Currently, in many cities around the world, Irregular-Shaped High-rise Buildings, which express the dynamic symbolism, are recognized for their landmark values. In order to realize the Irregular-Shaped High-rise Buildings, it is necessary to understand various fields such as the characteristics of digital tools, digital technique logic, design process, and construction method. In particular, it is important to plan Irregular-Shaped High-rise Buildings so that the various types of efficiency can be reviewed together, while generating understanding and formations from the initial design stage. Therefore, this study uses conceptual and parametric design tools related to form generation in digital architecture to analyze the details, methods, and characteristics of the Irregular-Shaped High-rise Buildings form generation process. In this paper, the parametric design tool is applied to study the various types of design and the process characteristics that can be considered in the initial design stage of the unstructured skyscraper.

Improving Spot Matching Accuracy Using an Automated Landmark Extraction in Protein 2-DE Gel Images (단백질 2-DE 젤 이미지에서 자동 기준점 추출을 통한 스팟 매칭 정확도 향상 기법)

  • Shim, Jung-Eun;Jin, Yan-Hua;Lee, Won-Suk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.455-458
    • /
    • 2008
  • 단백질체학에서 2-DE는 조직내의 단백질을 규명하는 단백질 분리 기술로서 2-DE에 의하여 생성된 단백질 이미지에서 스팟 매칭을 진행하여 상이한 단백질 젤 내에 존재하는 동일한 단백질 클래스를 찾을 수 있다. 그러나 단백질 2-DE 이미지는 실험 환경의 변화에 민감하여 이미지의 위치적인 변형이나 먼지, 공기방울 등으로 인해 많은 에러 정보를 포함할 수 있다. 이러한 에러는 스팟 매칭에 치명적인 영향을 주어 낮은 정확도를 가지게 된다. 본 논문에서는 단백질 2-DE 이미지 분석을 위한 스팟 매칭에서의 정확도를 향상시키기 위하여 기준점 학습과 기준점 추출의 두 단계로 이루어진 자동화된 기준점 추출 방법을 사용하여 스팟 매칭의 정확도를 향상시킬 수 있는 최적의 기준점을 선정하는 방법을 제안하며 선정된 기준점을 기반으로 다수의 기준 이미지를 선택하여 스팟 매칭을 반복적으로 진행함으로써 확률 기반의 정확한 스팟 매칭 결과를 도출하고자 한다. 특히 데이터 마이닝 기법에서 사용되는 최소지지도 값을 적용함으로써 지지도가 높은 스팟 매칭 결과를 빈발한 스팟 매칭으로 판정한다. 제안한 스팟 매칭 정확도 향상 기법의 정확도를 평가하기 위하여 실제 단백질 2-DE 젤 이미지 데이터를 사용하여 입력 기준점의 개수와 최소 지지도의 증가에 따른 정확도의 변화를 분석하였다.