• 제목/요약/키워드: Landmark detection

검색결과 68건 처리시간 0.03초

서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출 (Real-Time Landmark Detection using Fast Fourier Transform in Surveillance)

  • 강성관;박양재;정경용;임기욱;이정현
    • 디지털융복합연구
    • /
    • 제10권7호
    • /
    • pp.123-128
    • /
    • 2012
  • 본 논문에서는 보다 정확한 물체 인식을 위하여 물체의 특징점 검출 시스템을 제안한다. 물체의 특징점 검출 시스템은 학습 단계와 검출 단계로 구분된다. 학습 단계에서는 각 특징점의 탐색영역을 설정하기 위한 관심영역모델과 탐색영역에서 특징점을 검출하기 위한 각 특징점별 검출기를 생성한다. 검출 단계에서는 학습 단계에서 생성했던 관심영역모델을 이용하여 입력 영상에서 각각의 특징점의 탐색영역을 설정한다. 시스템에서 검출하고자 하는 특징점 검출 방법은 고속 푸리에 변환을 이용하기 때문에 검출 속도가 빠르며 물체의 추적 시 실패하는 확률이 낮아진다. 제안하는 방법을 개발하여 실험 영상에 적용한 결과 추적하고자 하는 물체가 불규칙적인 속도로 움직일 때에도 안정적으로 추적함을 알 수 있었다. 실험 결과는 기존의 방법들에서 사용되었던 다양한 데이터 집합에 적용하였을 때 우수한 성능을 보여준다.

Transposed Convolutional Layer 기반 Stacked Hourglass Network를 이용한 얼굴 특징점 검출에 관한 연구 (Facial Landmark Detection by Stacked Hourglass Network with Transposed Convolutional Layer)

  • 구정수;강호철
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.1020-1025
    • /
    • 2021
  • Facial alignment is very important task for human life. And facial landmark detection is one of the instrumental methods in face alignment. We introduce the stacked hourglass networks with transposed convolutional layers for facial landmark detection. our method substitutes nearest neighbor upsampling for transposed convolutional layer. Our method returns better accuracy in facial landmark detection compared to stacked hourglass networks with nearest neighbor upsampling.

구름 검출 성능에 따른 Landmark 정합 정밀도 분석 (Landmark Matching Tests : Sensitivity to Cloud Detection Performance)

  • 강치호;안상일
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.219-228
    • /
    • 2007
  • 구름 검출 시 사용되는 인자들에 따른 Landmark 정합의 정밀도 변화를 추정하기 위한 시험을 수행하였다. 본 시험을 위해서 MTSAT-1R의 7개 영상을 이용하였으며, Landmark 정합의 정밀도는 대략 0.1 화소 이하로 추정됨을 확인할 수 있었다.

  • PDF

얼굴 특징점 검출을 위한 적분 회귀 네트워크 (Integral Regression Network for Facial Landmark Detection)

  • 김도엽;장주용
    • 방송공학회논문지
    • /
    • 제24권4호
    • /
    • pp.564-572
    • /
    • 2019
  • 최근 딥러닝 기술의 발전과 함께 얼굴 특징점 검출 방법의 성능은 크게 향상되었다. 대표적인 얼굴 특징점 검출 방법인 히트맵 회귀 방법은 효율적이고 강력한 방법으로 널리 사용되고 있으나, 단일 네트워크를 통해 특징점 좌표를 즉시 얻을 수 없으며, 히트맵으로부터 특징점 좌표를 결정하는 과정에서 정확도가 손실된다는 단점이 존재한다. 이러한 문제점들을 해결하기 위해 본 논문에서는 기존의 히트맵 회귀 방법에 적분 회귀 방법을 결합할 것을 제안한다. 여러 가지 데이터셋을 사용한 실험을 통해 제안하는 적분 회귀 네트워크가 얼굴 특징점 검출 성능을 크게 향상시킨다는 것을 보인다.

Automated Mismatch Detection based on Matching and Robust Estimation for Automated Image Navigation

  • Lee Tae-Yoon;Kim Taejung;Choi Rae-Jin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.709-712
    • /
    • 2005
  • Ground processing for geostationary weather satellite such as GOES, MTSAT includes the process called image navigation. Image navigation means the retrieval of satellite navigational parameters from images and requires landmark detection by matching satellite images against landmark chips. For an automated preprocessing, a matching must be performed automatically. However, if match results contain errors, the accuracy of image navigation deteriorates. To overcome this problem, we propose the use of a robust estimation technique, called Random Sample Consensus (RANSAC), to automatically detect mismatches. We tested GOES-9 satellite images with 30 landmark chips. Landmark chips were extracted from the world shoreline database. To them, matching was applied and mismatch results were detected automatically by RANSAC. Results showed that all mismatches were detected correctly by RANSAC with a threshold value of 2.5 pixels.

  • PDF

2차원 전기영동 영상의 스팟 정합을 위한 Landmark 스팟쌍의 검출 (Detection of Landmark Spots for Spot Matching in 2DGE)

  • 한찬명;석수영;윤영우
    • 한국산업융합학회 논문집
    • /
    • 제14권3호
    • /
    • pp.105-111
    • /
    • 2011
  • Landmark Spots in 2D gel electrophoresis are used in many methods of 2DEG spot matching. Landmark Spots are obtained manually and it is a bottle neck in the entire protein analysis process. Automated landmark spots detection is a very crucial topic in processing a massive amount of 2DGE data. In this paper, Automated landmark spot detection is proposed using point pattern matching and graph theory. Neighbor spots are defined by a graph theory to use and only a centered spot and its neighbor spots are considered for spot matching. Normalized Hausdorff distance is introduced as a criterion for measuring degree of similarity. In the conclusion, the method proposed in this paper can get about 50% of the total spot pairs and the accuracy rate is almost 100%, which the requirements of landmark spots are fully satisfied.

Multi-Finger 3D Landmark Detection using Bi-Directional Hierarchical Regression

  • Choi, Jaesung;Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권1호
    • /
    • pp.9-11
    • /
    • 2016
  • Purpose In this paper we proposed bi-directional hierarchical regression for accurate human finger landmark detection with only using depth information.Materials and Methods Our algorithm consisted of two different step, initialization and landmark estimation. To detect initial landmark, we used difference of random pixel pair as the feature descriptor. After initialization, 16 landmarks were estimated using cascaded regression methods. To improve accuracy and stability, we proposed bi-directional hierarchical structure.Results In our experiments, the ICVL database were used for evaluation. According to our experimental results, accuracy and stability increased when applying bi-directional hierarchical regression more than typical method on the test set. Especially, errors of each finger tips of hierarchical case significantly decreased more than other methods.Conclusion Our results proved that our proposed method improved accuracy and stability and also could be applied to a large range of applications such as augmented reality and simulation surgery.

An Effective Retinal Vessel and Landmark Detection Algorithm in RGB images

  • Jung Eun-Hwa
    • International Journal of Contents
    • /
    • 제2권3호
    • /
    • pp.27-32
    • /
    • 2006
  • We present an effective algorithm for automatic tracing of retinal vessel structure and vascular landmark extraction of bifurcations and ending points. In this paper we deal with vascular patterns from RGB images for personal identification. Vessel tracing algorithms are of interest in a variety of biometric and medical application such as personal identification, biometrics, and ophthalmic disorders like vessel change detection. However eye surface vasculature tracing in RGB images has many problems which are subject to improper illumination, glare, fade-out, shadow and artifacts arising from reflection, refraction, and dispersion. The proposed algorithm on vascular tracing employs multi-stage processing of ten-layers as followings: Image Acquisition, Image Enhancement by gray scale retinal image enhancement, reducing background artifact and illuminations and removing interlacing minute characteristics of vessels, Vascular Structure Extraction by connecting broken vessels, extracting vascular structure using eight directional information, and extracting retinal vascular structure, and Vascular Landmark Extraction by extracting bifurcations and ending points. The results of automatic retinal vessel extraction using jive different thresholds applied 34 eye images are presented. The results of vasculature tracing algorithm shows that the suggested algorithm can obtain not only robust and accurate vessel tracing but also vascular landmarks according to thresholds.

  • PDF

각 분할 스핀 영상을 사용한 3차원 얼굴 특징점 검출 방법 (Robust 3D Facial Landmark Detection Using Angular Partitioned Spin Images)

  • 김동현;최강선
    • 전자공학회논문지
    • /
    • 제50권5호
    • /
    • pp.199-207
    • /
    • 2013
  • 스핀 영상은 3차원 표면의 특징을 효과적으로 표현하기 때문에 3차원 얼굴에서 특징점을 검출하는데 많이 이용된다. 하지만 기존의 스핀 영상은 표면의 법선 벡터 방향에 따라 매우 다른 스핀 영상이 만들어지는 단점이 있다. 또한 해당 영역 내에 존재하는 모든 점을 2차원으로 변환하여 고려하기 때문에 3차원 표면 특징이 모호해질 수 있다. 본 논문에서는 검색 영역을 분할한 스핀 영상을 이용하는 3차원 얼굴 특징점 검출 방법을 제안하였다. 기준점으로부터 떨어진 각도에 따라 검색범위를 분할하여 분할된 영역 내 점들에 대해 스핀 영상을 구성하여 방향에 따른 특징 추출을 극대화했다. 법선 벡터 평탄화를 이용하여 표면 법선 벡터 방향에 대한 잡음 민감성을 줄여 정확한 형태의 스핀 영상을 얻도록 했다. 실험을 통해 제안한 방법으로 찾은 특징점과 실측 특징점과의 거리차를 비교하여 기존방법에 비해 약 34% 향상된 정확도를 얻음을 확인했다.

Mobile Robot Path Finding Using Invariant Landmarks

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권3호
    • /
    • pp.178-184
    • /
    • 2016
  • This paper proposes a new path-finding scheme using viewpoint-invariant landmarks. The scheme introduces the concept of landmark detection in images captured with a vision sensor attached to a mobile robot, and provides landmark clues to determine a path. Experiment results show that the scheme efficiently detects landmarks with changes in scenes due to the robot's movement. The scheme accurately detects landmarks and reduces the overall landmark computation cost. The robot moves in the room to capture different images. It can efficiently detect landmarks in the room from different viewpoints of each scene. The outcome of the proposed scheme results in accurate and obstacle-free path estimation.