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Abstract: This paper proposes a new path-finding scheme using viewpoint-invariant landmarks. 
The scheme introduces the concept of landmark detection in images captured with a vision sensor 
attached to a mobile robot, and provides landmark clues to determine a path. Experiment results 
show that the scheme efficiently detects landmarks with changes in scenes due to the robot’s 
movement. The scheme accurately detects landmarks and reduces the overall landmark 
computation cost. The robot moves in the room to capture different images. It can efficiently detect 
landmarks in the room from different viewpoints of each scene. The outcome of the proposed 
scheme results in accurate and obstacle-free path estimation.     
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1. Introduction 

Path finding is an important concept in designing a 
wide range of applications in the field of robotics, obstacle 
avoidance and autonomous vehicle–navigation. Although, 
a number of path-finding techniques for robotic 
applications have improved accuracy and efficiency when 
determining a path using sonar and laser sensors, the 
problem still attracts researchers who want to deal with the 
problem by using vision sensors. Vision sensors are in 
great use these days for determining reference points in 
objects and can be used to detect a robot’s position using 
image information appearing in front of the camera. The 
image information can also be used to reconstruct a 3D 
object model. The points of interest are detected in 2D/3D 
environments, and these keypoints are designated as 
landmarks to localize the robot path so it can navigate with 
respect to these landmarks. 

This paper proposes a path-finding scheme based upon 
keypoint detection from scene information. The main 
contributions proposed in this paper are as follows. 
• The proposed scheme improves landmark detection 

performance in terms of computation time, compared 
to the recent state-of-the-art schemes, by reducing the 
feature dimensions of the feature vectors.  
• The method detects invariant landmarks, which are 

used to estimate and localize the position of the 
mobile robot. It makes it possible to determine an 
obstacle-free path for the robot. 
•  Landmark estimation from the proposed scheme 

guarantees path estimation with stable landmarks, 
and improves robot navigation with fast computation 
of a 3D map from different viewpoints. 

 
Section 2 reviews the literature on robot mapping and 

localization and the importance of vision sensors in path 
finding and feature-based mapping techniques. Section 3 
proposes the path-finding scheme using landmarks 
detected by matching invariant features from different 
viewpoint dataset images. An efficiency and accuracy 
analysis of the proposed scheme is discussed in Section 4, 
and the resulting outcomes are detailed in this section. The 
conclusion is presented in Section 5. 

2. Related Work 

Numerous algorithms have been proposed in the field 
of path finding, navigation, and simultaneous localization 
and mapping (SLAM) [1-4]. Most of the techniques rely 
on laser or sonar sensors, while others are based on 
recently developed vision sensors [5-7]. SLAM algorithms 
are classified according to the sensing method used in the 
application. These sensors are used to gather 2D and 3D 
information in the scene. Nagataniet et al. [8] used laser 
range finders to gather 3D data and to obtain depth 
information, but their algorithm cannot provide color data. 
In addition, it uses slope sensors and incurs a high cost to 
implement the data. Another range of sensor-based 
algorithms has been proposed by researchers to design 
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vision applications, including the monocular camera [7], 
the stereo vision bumblebee camera [9-11], and the 
Microsoft Kinect camera [12, 13]. 

Zhou et al. [14] proposed a 3D SLAM algorithm using 
an RGB camera and a time-of-flight (TOF) camera. The 
TOF camera uses an infrared (IR) camera for IR projection 
and capturing 3D data, but its resolution is low, which 
provides inaccurate map generation. A trinocular camera 
was used to capture 3D data with three cameras [15], 
which is an advancement over the stereo camera for 
searching pixels in the corresponding different scene 
images. Another method using the bumblebee stereo 
camera was proposed [9, 10] to obtain 3D scene 
information. It obtains pixel correspondence between left 
and right images, which is used to generate a disparity map. 
Recently, the Microsoft Kinect sensor has seen high 
demand due to its motion-sensing capability and high-
resolution depth map. Both RGB and depth data can be 
gathered with the Kinect, which has gesture and audio 
sensing capabilities [12]. 

A number of path-finding and navigation algorithms 
rely on detecting features and points of interest in the 
environment from changes in the robot’s motion. Many of 
the SLAM algorithms are based on feature extraction using 
the Harris corner detection method [16]. The algorithms 
using Harris corners require extensive computation to 
detect features in beacon-free environments, and cannot 
detect features with changes in viewpoints in the scenes. 
Some other approaches have been employed to detect the 
points of interest in environment images captured during 
movement of a mobile robot. Shi and Tomasi [17] 
proposed feature tracking in the images, and this algorithm 
resulted in a more robust approach, compared to the Harris 
corner method. Another feature-based algorithm [18], 
determines invariant-landmark clues with a change in 
viewpoint, which can be employed in various path-finding 
and SLAM algorithms. The approach is efficient but has a 
computation drawback because Gaussian pyramid 
computation is extensive. Thus, this algorithm cannot be 
directly incorporated into the design of SLAM algorithms 
in real time, and a demand arises to determine the points of 
interest with fewer computations. Comparative 
observations of all the algorithms used for SLAM and 
feature-based navigation are detailed in Table 1. 

3. The Proposed Scheme 

This section discusses the basic and detailed 
procedures to determine robot movement, which includes 
landmark matching, estimation of intrinsic parameters and 
extrinsic parameters, point cloud generation, path finding 
and object modeling. 

3.1 Landmark Scheme 
In the sensor described in this paper, a landmark can be 

estimated by matching different images. The robot, named 
KOBOT, moves in a room to sense the environment and 
capture different images. KOBOT uses the Kinect sensor 
to capture images and to capture various image datasets 

(for instance, an illumination scene–change dataset, a 
rotation scene–change dataset, a blurred and affine scene–
change dataset). A schematic of the proposed scheme, 
depicting the steps employed in this research, is given in 
Fig. 1. 

The operating principle of the proposed scheme is as 
follows: the scene dataset is sent to the interest-point 
detection block and the cluster landmark block. To match 
and detect landmarks in the corresponding images, the 
points of interest are detected relative to the points of 
interest in the next image. A series training cycle is 
employed to cluster the similar points of interest, so that 
similar features for each image between the current scene 
and the different viewpoints can be detected. Self-
organizing map (SOM) networks are employed to detect 
the nearest neighbor pixels in each cluster of features. 
Only one neuron in the output grid will have one neuron. 
The remaining clusters are mapped to the neuron having 
similar values. The output SOM map results in reduced 

Table 1. Comparative observations for SLAM and 
feature-based navigation algorithms. 

Sensing method and 
feature-based 

algorithms 
Observations 

Laser range finders and 
slope sensors [8] 

3D information is detected by the 
robot with respect to the horizontal 
plane; this method is difficult to 
implement. 

Time-of-flight camera 
[14] 

This method has low resolution, and 
the two cameras are aligned to capture 
the same object image. The method is 
based on the time of flight concept for 
ray projection and perception. 

Trinocular stereo 
camera [15] 

The trinocular camera is used to speed 
the capture process, and it searches the 
triplets corresponding to 2D segments 
in the 3 images. It suffers from the 
alignment problem. 

Bumblebee stereo vision 
camera [9, 10] 

The bumblebee stereo camera 
generates dense 3D maps, but it 
results in less accurate maps. The cost 
of the camera is high. 

Kinect camera [12, 13]

The camera provides high-resolution 
RGB and depth images able to 
recognize human action, gestures, and 
audio. 

Harris corner method 
[16] 

The method detects features in the 
scene with better location accuracy, 
and implementation is faster. 

Shi and Tomasi [17] 

This is a feature-tracking algorithm to 
detect features in scene images; it is 
faster and more robust than the Harris 
corner detection method. 

Lowe SLAM algorithm 
[18] 

This viewpoint-invariant feature-
detection method obtains robust and 
stable features. It can be used to track 
an object in real-time implementation 
of object-tracking and object-detection 
applications. It suffers from slow 
algorithm performance at the corners, 
and needs more computations. 
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landmarks. The intrinsic parameters and extrinsic 
parameters are calculated and discussed in the next 
subsection. 

3.2 Intrinsic Parameters and Extrinsic 
Parameters for Kinect Sensor 

It is necessary to determine the intrinsic parameters of 
the depth and RGB camera for 3D map building. For each 
camera disparity image, the intrinsic parameters are used 
to form a point cloud. The intrinsic parameters for the 
calibration process were determined by using the mobile 
robot programming toolkit (MRPT) [19] library. It was 
concluded that the intrinsic calibration parameters did not 
correspond to the disparity image owing to limited 
bandwidth for the USB connection. The parameters 
calculated for the experiments are listed in Table 2, which 
gives a brief overview to better understand the calibration 
parameters for RGB/depth images from the Kinect sensor. 
Example images from the calibration process are shown in 
Fig. 2. 

For each object point, the calibration parameters denote 
the relation between the image measurements (x, y, z’) and 
object coordinates (X, Y, Z). The image size of the 
disparity scene obtained by chip processing is of reduced 
size, in comparison with the scene captured using the IR 
sensor. The size of the disparity scene is 640 × 480 pixels. 
As can be seen from Table 2, various calibration 
parameters are calculated for the RGB and depth scenes, 
for instance, focal lengths (fx/fy), the optical center (cx/cy), 
and distortion parameters. 

3.3 Point cloud formation  
The point clouds received for each room scene with the 

Kinect sensor have more than 300,000 points. The 
numbers in the point clouds are of reduced size because 
the process needs a number of training cycles to iterate. It 
is preferable to take the front scene image to analyze the 
point cloud, and then discard a point area that is too high 
for KOBOT. In addition, the scene images that are at too 
low a position for the Kinect are also discarded. Each point 
in the point cloud is represented by a 3D coordinate (x, y, 
z). A filter is applied to remove the points that have too-
high and too-low values, and a threshold is set to keep the 
points that contribute to the landmark estimation and path 
determination block. 

The algorithm is enhanced by reducing the number of 
point-cloud points using a voxel grid approach. The voxel 
grid is designed to reduce the number of points in the point 
cloud, and results in a point cloud in a 2D point space. The 
proposed scheme uses a voxel grid of 1 cm x 1 cm x 1 cm. 
A centroid single point is calculated to replace all the 
voxel grid points with a single point. The 3D point 
information is stored in a voxel grid, which is a 3D 
occupancy grid where cells are marked as occupied, free, 
or unknown. The MRPT library was used, which consists 
of two major stages: depth/RGB image conversion to a 3D 
point cloud, and a point-cloud projection. MRPT provides 
a CColouredPointsMap function to convert the range scan 
to a point cloud. The points of the point cloud are copied 
into a Point Cloud Library (PCL) point cloud. 

project3DPointsFromDepthImageInto can be used to 
directly project the point into the PCL. To do this, MRPT 
must be precompiled with the PCL before projection of the 
points. The sequence of steps to compute the 3D point 
cloud is as follows. 

1. The out-of-range points are removed from the 

Fig. 2. Example images showing calibration process 
and the reprojected corners. 

 
Table 2. Intrinsic and extrinsic calibration parameters 
calculated for the RGB/depth images. 

Dataset 1 Dataset 2 
Parameters Infrared/

Depth RGB Infrared/
Depth RGB 

fx 556.70 542.21 285.48 647.44 
fy 533.59 595.10 298.72 655.94 
cx -285.32 413.64 515.45 381.85 

cy 163.77 224.60 241.30 75.21 

Experimental setup in room 
environment

Dataset generation and interest 
point detection

Capture multiple image datasets in room from 
different viewpoint

Capture illumination 
scene change 

dataset

Capture rotation 
scene change 

dataset

Capture blurred and 
affine scene change 

dataset

Intrinsic parameters and Extrinsic 
parameters calculation for Kinect Sensor

Detect landmark in the scene 
with the propose scheme

Cluster landmarks and manage 
database

Robot movement and localization with the 
detected landmark clues

Landmark 
database

Robot pose 
estimation

Robot location 
estimation with 
respect to the 
observation

Fig. 1. A schematic of the proposed scheme depicting
the steps employed in the research work. 
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dataset, i.e. the values that are too high or too low 
are discarded. A threshold is defined to select the 
points in the output space. The HeightFilterMin and 
HeightFilterMax properties are defined by the user 
to select the 3D point space. 

2. Copy the point cloud to a visualization cloud if 
PointCloudOut is set to enable. 

3. Use VoxelGrid class to downsample the point cloud. 
4. The NormalEstimation method is used to estimate 

the normals. 
 
The sensor observations share a common virtual base 

class, and these classes are used to store laser scanners, 3D 
range images, monocular and stereo images, GPS data, 
odometry readings, etc. The class mrpt::slam::Csensory 
Frame is used as a set of observations that were collected 
at approximately the same instant. The class mrpt::slam:: 
CRawlog is used to load, edit, and explore the robotic 
dataset. The rawlog dataset file is used as input, and is 
visualized and manipulated by RawlogViewer. The rawlog 
file consists of all the data gathered by the sensor during 
movement through the environment. The format of the 
rawlog file is defined as a sequence of Actions and 
Observations, where Actions include robot motor 
actuations (odometry) and Observations includes readings 
of laser scanners, and images from cameras and sonar 
ranges, etc. 

3.4 Path-finding algorithm and object 
modeling 

The proposed approach is based on processing the 
landmarks and the 3D point cloud, and using the resulting 
information to execute a 2D navigation block. The path-
finding block consists of generating a 3D point cloud, 
which is processed to obtain an obstacle-free path. The 
robot moves in the room using the invariant landmarks in 
scenes to reach the goal. The best path is determined via 
minimum-distance calculation from the robot position to 
the target, which resulted in an obstacle-free shortest path. 

A probabilistic model for the collection of features with 
flexible appearance is used, which consists of a set of 
features of a scene. For two classes, 1ω  and 2ω , a 
Bayesian decision is defined, which is used to set the 
threshold value for path finding: 

 
 *

1,2 1,2
arg max ( ) arg max ( ) ( )x x x

x x
X p w F p F w p w

= =
= =  (1)        

 
where X is the feature of the front scene captured from the 
camera. A hypothesis is called for the detected matched 
features of a scene with different viewpoints. The 
likelihood term in Eq. (1) can be expanded, as seen below: 

 
 ( ) ( , ) ( , ) ( )x x x x

h H h H

p F w p F h w p F h w p h w
ε ε

= =∑ ∑  (2) 

 
where x=1, 2, and H is the set of matched hypotheses. It is 
assumed that segmenting the object in the scene from the 
background has no occlusions, and the matching 

hypothesis is considered many-to-1. In order to overcome 
the large hypothesis feature space, a threshold-based 
hypothesis is considered, which can be defined as follows. 

For each pth detected feature of the segmented object, 
and the qth part of the object model, the most probable 
hypothesis, H*, is determined for each feature. The 
corresponding mean feature vectors are computed by 
calculating the least X2 distance to the segmented object 
features, which are denoted by px and qx . The hypothesis 
can be defined with the following equation: 

 
 ( ) ( , * )x xp F w p F h w≈  (3) 

 
The defined hypothesis condition makes sure that the 

object does not contain repeating patterns, and correct or 
false matches can be obtained from positive and negative 
matches based on the hypothesis for each detected feature 
of the scene. The differences between the corresponding 
matched keypoints are computed for the reference region 
of interest and the next scene captured by the camera. The 
matched hypothesis pair is selected as the positive feature 
match if the least X2 distance to the segmented object 
feature is less than or equal to the threshold value.                                   

4. Simulation Results 

In order to determine the effectiveness of the proposed 
scheme, 100 images were selected for test cases, and 
points of points were detected. The experiments were 
performed with images captured by the mobile robot. The 
mobile robot named KOBOT was fitted with an RGB-D 
Kinect sensor, and moved through the room environment. 
Fig. 3 shows a snapshot of RGB and grayscale images 
captured by KOBOT at a time instance of 30 sec. 

 

 

Fig. 3. Snapshot of RGB and grayscale images 
captured by KOBOT. 

 
A laser source is incorporated in the Kinect device, 

which splits a single beam into multiple beams that create 
a constant speckle of patterns projected on the object. This 
beam is based on the concept of a high-power projector 
beam, and this speckle pattern is then interpreted by a set 
of points known as a point cloud. Each point consists of 
three coordinates, and an example is shown in Fig. 4. The 
MRPT library is used in the implementation of various 
tasks that provide access to the Kinect device. The library 
is used to convert depth and RGB data to 3D point–cloud 
information. A threshold of 0.5 m was set to estimate 
object distance. Distances less that 0.5 m and greater than 
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6 m were discarded to maintain better accuracy in the 
results. Fig. 5 shows the results of the distances between 
the camera and the object. A 3D view is shown, which was 
used as a reference in the landmark detection process. 

 
 

 

Fig. 4. Speckle pattern shown as a point cloud, and 
each point is denoted by 3D coordinates. 

 

 

Fig. 5. This 3D view shows the position of the object 
with respect to the camera. The distance of the object 
is shown on the white line. 

 
Fig. 6 shows the detection of the landmarks in the room 

at 30 sec and 50 sec. The locations of the landmarks are 
stored in the database for further metric evaluation. An 
average of 50 landmarks were detected in each of the 100 
images in the different viewpoint datasets, and an accuracy 
of 95 % was achieved. 

 

 
(a) Detected landmarks at 30 sec and                                                   

the corresponding landmarks 
 

 
(b) Detected landmarks at 50 sec and                                                 

the corresponding landmarks. 

Fig. 6. Detection of the landmarks at 30 sec and 50 sec, 
and the landmark position in a 2D plot. 

The performance of the herein-presented algorithm was 
demonstrated with a number of different room images. The 
proposed scheme was compared with the other recent 
state-of-the-art methods mentioned in the literature. For 
the captured room image, the SIFT method was used to 
calculate the points of interest by determining the 
difference-of-Gaussian (DOG). These points are invariant 
to viewpoint change, i.e. the (scale invariant feature 
transform) SIFT method resulted in rotation- and scale-
invariant points of interest. The SIFT method generates a 
128-dimensional descriptor vector. This vector is passed to 
the self-organizing neural network to reduce the 
dimensions of the detected landmarks. The dimensions of 
the descriptor are based on the SOM topological network. 
The best results are obtained for a 7 x 7 rectangular 
topological neural network. The descriptor vector is 
mapped onto the SOM network. This reduces the 
computational overhead for the large-room images 
database in the path-finding scheme. Each image is passed 
to the landmark extraction process and passes through the 
database for further optimization and storage. The 
proposed method detected landmarks in 0.03245 sec, 
which is comparatively less than the SIFT method, which 
detected fewer landmarks in each image in 0.23467 sec. 
Fig. 7 shows 3D and 2D representations of the point cloud 
generated in the scene captured during movement of the 
robot. 

 

 

Fig. 7. 3D and 2D point clouds of an image captured 
during robot movement. 

 
Figs. 8 and 9 offer an idea of how the robot moved 

during the experiments with the use of landmark clues. 
The map shown was built using the detected landmarks, 
and hence, white areas in Fig. 9 may contain many 
obstacles that are avoided during robot navigation. The 
obstacles are invisible with a laser sensor, but the Kinect 
camera has the advantage of detecting these obstacles 
using the RGB camera, and it can estimate landmarks for 
optimal path planning. The trajectory shows the areas 
where the robot did not visit, and set the field of view that 
was used during the navigation. 

Fig. 9 shows the path of the mobile robot from using 
the similar landmarks. Similar landmarks were detected 
using SOM landmark matching, which were then plotted 
onto a 2D graph. These landmarks are rotation- and scale-
invariant and are stored in the database to detect the path 
of the robot. The robot starts at the initial position and then 
navigates using the landmarks to move in the room. The 
final path was determined by the robot movement via the 
landmarks that are detected by matching the room images. 
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5. Conclusion 

In this paper, a new path-finding scheme for mobile 
robots is proposed to determine paths in a room. The 
algorithm is robust against viewpoint change, and can 
determine landmarks from room images. By employing a 
suitable feature-matching detector, the resulting estimates 
are accurate and precise from different scenes. The 
detected landmarks are prominent and stable for path 
analysis during movement of the robot. Furthermore, the 
available landmarks provide essential clues for many 
different types of images, particularly with regard to 
autonomous vehicle navigation, and object detection and 
localization. 
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