• 제목/요약/키워드: Landing stability

검색결과 88건 처리시간 0.025초

Multibody simulation and descent control of a space lander

  • Pagani, A.;Azzara, R.;Augello, R.;Carrera, E.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.91-113
    • /
    • 2020
  • This paper analyzes the terminal descent phase of a space lander on a surface of a celestial body. A multibody approach is adopted to build the physical model of the lander and the surface. In this work, a legged landing gear system is considered. Opportune modelling of the landing gear crashbox is implemented in order to accurately predict the kinetic energy. To ensure the stability of the lander while impacting the ground and to reduce the contact forces that arise in this maneuver, the multibody model makes use of a co-simulation with a dedicated control system. Two types of control systems are considered; one with only position variables and the other with position and velocity variables. The results demonstrate the good reliability of modern multibody technology to incorporate control algorithms to carry out stability analysis of ground impact of space landers. Moreover, from a comparison between the two control systems adopted, it is shown how the velocity control leads to lower contact forces and fuel consumption.

무릎 관절 근육 피로와 과체중이 착지 시 하지 관절의 각변위와 모멘트에 미치는 영향 (Effects of Knee Joint Muscle Fatigue and Overweight on the Angular Displacement and Moment of the Lower Limb Joints during Landing)

  • 김태현;염창홍
    • 한국운동역학회지
    • /
    • 제23권1호
    • /
    • pp.63-76
    • /
    • 2013
  • The purpose of this study was to investigate the effects of knee joint muscle fatigue and overweight on the angular displacement and moments of the lower limb joints during landing. Written informed consent forms, which were approved by the human subject research and review committee at Dong-A University, were provided to all subjects. The subjects who participated in this study were divided into 2 groups: a normal weight group and an overweight group, consisting of 15 young women each. The knee joint muscle fatigue during landing was found to increase the dynamic stability by minimizing the movements of the coronal and horizontal planes and maintaining a more neutral position to protect the knee. The effect of body weight during landing was better in the normal weight group than in the overweight group, with the lower limbs performing their shock-absorbing function in an efficient manner through increased sagittal movement. Therefore, accumulated fatigue of knee joint muscles or overweight may be highly correlated with the increase in the incidence of injury during landing after jumping, descending stairs, and downhill walking.

드롭착지 동작 시 체간모델에 따른 척추분절운동이 자세안정성 해석에 미치는 영향 (The Effect Analysis of Postural Stability on the Inter-Segmental Spine Motion according to Types of Trunk Models in Drop Landing)

  • 유경석
    • 한국운동역학회지
    • /
    • 제24권4호
    • /
    • pp.375-383
    • /
    • 2014
  • The purpose of this study was to assess the inter-segmental trunk motion during which multi-segmental movements of the spinal column was designed to interpret the effect of segmentation on the total measured spine motion. Also it analyzed the relative motion at three types of the spine models in drop landing. A secondary goal was to determine the intrinsic algorithmic errors of spine motion and the usefulness of such an approach as a tool to assess spinal motions. College students in the soccer team were selected the ten males with no history of spine symptoms or injuries. Each subject was given a fifteen minute adaptation period of drop landing on the 30cm height box. Inter-segmental spine motion were collected Vicon Motion Capture System (250 Hz) and synchronized with GRF data (1000 Hz). The result shows that Model III has a more increased range of motion (ROM) than Model I and Model II. And the Lagrange energy has significant difference of at E3 and E4 (p<.05). This study can be concluded that there are differences in the three models of algorithm during the phase of load absorption. Especially, Model III shows proper spine motion for the inter-segmental joint motion with the interaction effects using the seven segments. Model III shows more proper observed values about dynamic equilibrium than Model I & Model II. The findings have shown that the dynamic stability strategy of Model III toward multi-directional spinal motion supports for better function of the inter-segmental motor-control than the Model I and Model II.

Nonlinear model based particle swarm optimization of PID shimmy damping control

  • Alaimo, Andrea;Milazzo, Alberto;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • 제3권2호
    • /
    • pp.211-224
    • /
    • 2016
  • The present study aims to investigate the shimmy stability behavior of a single wheeled nose landing gear system. The system is supposed to be equipped with an electromechanical actuator capable to control the shimmy vibrations. A Proportional-Integrative-Derivative (PID) controller, tuned by using the Particle Swarm Optimization (PSO) procedure, is here proposed to actively damp the shimmy vibration. Time-history results for some test cases are reported and commented. Stochastic analysis is last presented to assess the robustness of the control system.

드롭랜딩 시 높이 변화에 따른 인체 분절의 충격흡수 전략에 관한 연구 (The Study of Strategy for Energy Dissipation During Drop Landing from Different Heights)

  • 조준행;고영철;이대연;김경훈
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.315-324
    • /
    • 2012
  • The purpose of current study was to investigate the effects of the heights on the lower extremities, torso and neck segments for energy dissipation during single-leg drop landing from different heights. Twenty eight young healthy male subjects(age: $23.21{\pm}1.66yr$, height: $176.03{\pm}4.22cm$, weight: $68.93{\pm}5.36kg$) were participated in this study. The subjects performed the single-leg drop landing from the various height(30, 45 & 60 cm). Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. The results were as follows. First, the ROM at the ankle, knee, hip and trunk was increased with the increased heights but the ROM at the neck was increased in the 60cm. Second, the angular velocity, moment and eccentric work at the ankle, knee, hip, trunk, and neck was increased with the increased heights. Third, the contribution to total work at the knee joint was not significantly different, while the ankle joint rate was decreased and hip and neck rate was increased in the 60cm, and trunk rate was increased with the increased heights. Lastly, the increase in landing height was able to augment the level of energy dissipation not only at the lower extremities but also at the trunk and neck. The findings showed that drop landing affect trunk and neck with lower extremity joints. Therefore, we need to consider that trunk and neck strengthening including stability should be added to reduce sports injury during prevention training.

구글 맵 API를 이용한 딥러닝 기반의 드론 자동 착륙 기법 설계 (Design of Deep Learning-Based Automatic Drone Landing Technique Using Google Maps API)

  • 이지은;문형진
    • 산업융합연구
    • /
    • 제18권1호
    • /
    • pp.79-85
    • /
    • 2020
  • 최근 원격조종과 자율조종이 가능한 무인항공기(RPAS:Remotely Piloted Aircraft System)가 택배 드론, 소방드론, 구급 드론, 농업용 드론, 예술 드론, 드론 택시 등 각 산업 분야와 공공기관에서의 관심과 활용이 높아지고 있다. 자율조종이 가능한 무인드론의 안정성 문제는 앞으로 드론 산업의 발달과 함께 진화하면서 해결해야 할 가장 큰 과제이기도 하다. 드론은 자율비행제어 시스템이 지정한 경로로 비행하고 목적지에 정확하게 자동 착륙을 수행할 수 있어야 한다. 본 연구는 드론의 센서와 GPS의 위치 정보의 오류를 보완하는 방법으로서 착륙지점 영상을 통해 드론의 도착 여부를 확인하고 정확한 위치에서의 착륙을 제어하는 기법을 제안한다. 서버에서 도착지 영상을 구글맵 API로부터 수신받아 딥러닝으로 학습하고, 드론에 NAVIO2와 라즈베리파이, 카메라를 장착하여 착륙지점의 이미지를 촬영한 다음 이미지를 서버에 전송한다. Deep Learning으로 학습된 결과와 비교하여 임계치에 맞게 드론의 위치를 조정한 후 착륙지점에 자동으로 착륙할 수 있다.

달착륙선 충격흡수 착륙장치 개발동향 (Development Trend of Shock-Absorbing Landing gear for Lunar Lander)

  • 김원석;김선원;황도순
    • 항공우주산업기술동향
    • /
    • 제9권1호
    • /
    • pp.119-129
    • /
    • 2011
  • 달착륙선이 주어진 임무를 수행하기 위해서는 달궤도 진입 후 성공적인 착륙이 보장되어야 한다. 착륙환경에서 발생되는 높은 충격하중 하에서 착륙선 본체 및 탑재체의 파손을 막기 위해서는 높은 충격흡수율 및 자세 안정성이 요구된다. 따라서 착륙 시 발생하는 충격을 효과적으로 흡수하면서 기체의 전복 및 쓰러짐을 막을 수 있는 착륙장치는 달착륙선의 핵심 구성요소이다. 본 논문에서는 현재까지 달착륙에 성공한 달착륙선과 현재 개발단계에 있는 달착륙선을 대상으로 다양한 착륙장치 설계안들을 검토 및 비교하였으며, 현재 진행되고 있는 한국형 달탐사선 예비설계요구조건에 부합하는 착륙장치의 요구조건 및 이를 충족시킬 수 있는 착륙장치 설계에 대한 예를 제시하고자 한다.

  • PDF

Robustness Bounds of the Vertical Take-Off and Landing Aircraft System with Structured Uncertainties

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.459-459
    • /
    • 2000
  • The purpose of this paper is the application of the techniques for the new estimation of robustness for the aircraft systems having structured uncertainties. The basic ideas to analyze the system which is the originally nonlinear is Lyapunov direct theorems. The nonlinear systems have various forms of terms inside the system equations and this investigation is confined in the form of bounded uncertainties. The number of uncertainties will be the degree of freedoms in the calculation of the robust stability regions called the robustness bounds. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. Using this relaxing stability conditions, in this paper, the quadratic form of Lyapunov function is utilized. In this paper, the practical system of vertical take-off and landing (VTOL) aircraft is analyzed with the proposed stability criteria based upon the Lyapunov direct method. The application of numerical procedures can prove the improvements in estimations of robustness with structured uncertainties. The applicable aircraft system is assumed to be linear with time-varying with nonlinear bounded perturbations.

  • PDF

Design of Longitudinal Auto-landing Guidance and Control System Using Linear Controller-based Adaptive Neural Network

  • Choi, Si-Young;Ha, Cheol-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1624-1627
    • /
    • 2005
  • We proposed a design technique for auto-landing guidance and control system. This technique utilizes linear controller and neural network. Main features of this technique is to use conventional linear controller and compensate for the error coming from the model uncertainties and/or reference model mismatch. In this study, the multi-perceptron neural network with single hidden layer is adopted to compensate for the errors. Glide-slope capture logic for auto-landing guidance and control system is designed in this technique. From the simulation results, it is observed that the responses of velocity and pitch angle to commands are fairly good, which are directly related to control inputs of throttle and elevator, respectively.

  • PDF

소형 항공기 착륙장치 낙하시험 장비 설계 및 제작 (Design & Fabrication for Small Aircraft Landing Gear Drop Test Rig System)

  • 한재도;이영신;안오성
    • 한국항공우주학회지
    • /
    • 제36권11호
    • /
    • pp.1121-1125
    • /
    • 2008
  • 본 논문에서는 소형 항공기 낙하시험을 위한 낙하 시험 장비 개발에 관한 연구를 수행하였다. 시험장비는 유압 액츄에이터를 이용하여 자동으로 시험체를 상승시키고 또 다른 유압 액츄에이터를 이용 자동으로 낙하시키며, 낙하시험시 안전성 확보를 위한 2중의 안전 장치를 적용하였다. 장비의 정적 안정성 확보를 위해 장비의 구조해석을 수행하였으며, 해석된 결과를 반영하여 시험 장비를 설계 제작을 하였다. 제작된 장비의 낙하 신뢰도 확보를 위해 마찰력 측정 시험 및 낙하속도 측정 시험을 실시하여 장비의 적합성을 확인 하였다.