Browse > Article
http://dx.doi.org/10.12989/aas.2020.7.2.091

Multibody simulation and descent control of a space lander  

Pagani, A. (Mul2 group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Azzara, R. (Mul2 group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Augello, R. (Mul2 group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Carrera, E. (Mul2 group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Publication Information
Advances in aircraft and spacecraft science / v.7, no.2, 2020 , pp. 91-113 More about this Journal
Abstract
This paper analyzes the terminal descent phase of a space lander on a surface of a celestial body. A multibody approach is adopted to build the physical model of the lander and the surface. In this work, a legged landing gear system is considered. Opportune modelling of the landing gear crashbox is implemented in order to accurately predict the kinetic energy. To ensure the stability of the lander while impacting the ground and to reduce the contact forces that arise in this maneuver, the multibody model makes use of a co-simulation with a dedicated control system. Two types of control systems are considered; one with only position variables and the other with position and velocity variables. The results demonstrate the good reliability of modern multibody technology to incorporate control algorithms to carry out stability analysis of ground impact of space landers. Moreover, from a comparison between the two control systems adopted, it is shown how the velocity control leads to lower contact forces and fuel consumption.
Keywords
multibody simulation; space landers; landing stability; control system;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Stio, A., Spinolo, P., Carrera, E. and Augello, R. (2017), "Analysis of landing mission phases for robotic exploration on phobos mars moon", ADVANCES IN AIRCRAFT AND SPACECRAFT SCIENCE, 4(5), 529-541.   DOI
2 Sullivan, T.A. and McKay, D.S. (1991), "Using space resources", NASA Technical Reports.
3 Surkov, Y.A., Moskalyeva, L., Shcheglov, O., Kharyukova, V., Manvelyan, O., Kirichenko, V. and Dudin, A. (1983), "Determination of the elemental composition of rocks on Venus by Venera 13 and Venera 14 (preliminary results)", Journal of Geophysical Research: Solid Earth, 88(S02).
4 Arvidson, R., Squyres, S., Anderson, R., Bell, J., Blaney, D., Brueckner, J., Cabrol, N., Calvin, W.,Carr, M., Christensen, P. et al. (2006), "Overview of the spirit Mars exploration rover missionto Gusev Crater: Landing site to Backstay Rock in the Columbia Hills", Journal of GeophysicalResearch: Planets, 111(E2).
5 Von Schwerin, R. (2012), Multibody system simulation: numerical methods, algorithms, and software, volume 7, Springer Science & Business Media.
6 Zheng, G., Nie, H., Chen, J., Chen, C. and Lee, H. (2018), "Dynamic analysis of lunar lander during soft landing using explicit finite element method", Acta Astronautica, 148, 69-81.   DOI
7 Arbor, A., Negrut, D. and Dyer, A. (2004), "Adams/solver primer",
8 Badescu, V. (2009), Mars: prospective energy and material resources, Springer Science & Business Media.
9 Banerjee, A. (2003), "Contributions of multibody dynamics to space flight: a brief review", Journal of Guidance, Control, and Dynamics, 26(3), 385-394.   DOI
10 Bayle, O., Lorenzoni, L., Blancquaert, T., Langlois, S., Walloschek, T., Portigliotti, S. and Capuano, M. (2011), "Exomars entry descent and landing demonstrator mission and design overview", Nasa Solar System.
11 Cadogan, D., Sandy, C. and Grahne, M. (2002), "Development and evaluation of the Mars Pathnder in atable airbag landing system", Acta Astronautica, 50(10), 633-640.   DOI
12 Adams, M. (2003), "MSC. Software Corporation", Ann Arbor, Michigan.
13 AlandiHallaj, M. and Assadian, N. (2017), "Soft landing on an irregular shape asteroid using Multiple- Horizon Multiple-Model Predictive Control", Acta Astronautica, 140, 225-234.   DOI
14 Blundell, M. and Harty, D. (2004), Multibody systems approach to vehicle dynamics, Elsevier.
15 Dong, S., Luo, Y. and Zhao, Y. (2005), "Practical application and research advances of long-span space structures [J]", Spatial Structures, 4.
16 Dallali, H., Mosadeghzad, M., Medrano-Cerda, G., Docquier, N., Kormushev, P., Tsagarakis, N., Li, Z. and Caldwell, D. (2013), "Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach", .
17 De Lafontaine, J. (1992), "Autonomous spacecraft navigation and control for comet landing", Journal of Guidance, Control, and Dynamics, 15(3), 567-576.   DOI
18 Desai, P., Prince, J., Queen, E., Schoenenberger, M., Cruz, J. and Grover, M. (2011), "Entry, descent, and landing performance of the Mars Phoenix Lander", Journal of Spacecraft and Rockets, 48(5), 798-808.   DOI
19 Glassmeier, K., Boehnhardt, H., Koschny, D., Kuhrt, E. and Richter, I. (2007), "The Rosetta mission: flying towards the origin of the solar system", Space Science Reviews, 128(1-4), 1-21.   DOI
20 Golombek, M., Cook, R., Economou, T., Folkner, W., Haldemann, A., Kallemeyn, P., Knudsen, J.M., Manning, R., Moore, H., Parker, T. et al. (1997), "Overview of the Mars Pathfinder mission and assessment of landing site predictions", Science, 278(5344), 1743-1748.   DOI
21 Gontier, C. and Li, Y. (1995), "Lagrangian formulation and linearization of multibody system equations", Computers & structures, 57(2), 317-331.   DOI
22 Kornfeld, R., Prakash, R., Devereaux, A., Greco, M., Harmon, C. and Kipp, D. (2014), "Verification and validation of the Mars Science Laboratory/Curiosity rover entry, descent, and landing system", Journal of Spacecraft and Rockets, 51(4), 1251-1269.   DOI
23 Chu, C. (2006), "Development of advanced entry, descent, and landing technologies for future Mars missions", in "Aerospace Conference, 2006 IEEE", pages 8-pp.
24 Pagani, A., Augello, R., Governale, G. and Viglietti, A. (2019), "Drop Test Simulations of Composite Leaf Spring Landing Gears", Aerotecnica Missili e Spazio.
25 Kounaves, S., Hecht, M., Kapit, J., Gospodinova, K., DeFlores, L., Quinn, R., Boynton, W., Clark, B., Catling, D., Hredzak, P. et al. (2010), "Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results", Journal of Geophysical Research: Planets, 115(E1).
26 Larson, J. and Pranke, L. (1999), Human spaceflight mission analysis and design (Space Technology Series), New York: McGrawl-Hill.
27 Martella, P., Buonocore, M., Desiderio, D., Lovera, M. and Portigliotti, S. (2008), "Soft landing on Mars: The GNC tasks in the ExoMars descent module mission", in "7th International ESA Conference on Guidance, Navigation and Control Systems", pages 1-13.
28 Mutch, T., Binder, A., Huck, F., Levinthal, E., Liebes, S., Morris, E., Patterson, W., Pollack, J., Sagan, C. and Taylor, G. (1976), "The Surface of Mars: There View from the Viking 1 Lander", Science, 193(4255), 791-801.   DOI
29 O'Neill, G. (1974), "The colonization of space", in "Space Manufacturing Facilities", page 2041.
30 Ramanan, R. and Lal, M. (2005), "Analysis of optimal strategies for soft landing on the moon from lunar parking orbits", Journal of earth system science, 114(6), 807-813.   DOI
31 Rew, D., Ju, G., Lee, S., Kim, K., Kang, S. and Lee, S. (2014), "Control system design of the Korean lunar lander demonstrator", Acta Astronautica, 94(1), 328-337.   DOI
32 Schiehlen, W. et al. (1990), Multibody systems handbook, volume 6, Springer.
33 Sherman, M.A., Seth, A. and Delp, S. (2011), "Simbody: multibody dynamics for biomedical research", Procedia Iutam, 2, 241-261.   DOI
34 Hofer, R., Randolph, T., Oh, D., Snyder, J. and De Grys, K. (2006), "Evaluation of a 4.5 kw commercial hall thruster system for NASA science missions", in "42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit", page 4469.
35 Siddiqi, A.A. (2010), "Competing technologies, national narratives, and universal claims: Toward a global history of space exploration", Technology and Culture, 51(2), 425-443.   DOI
36 Simulink, M. and Natick, M. (1993), "The mathworks", .
37 Squyres, S., Arvidson, R., Bollen, D., Bell III, J., Brueckner, J., Cabrol, N., Calvin, W., Carr, M., Christensen, P., Clark, B. et al. (2006), "Overview of the opportunity mars exploration rover mission to meridiani planum: Eagle crater to purgatory ripple", Journal of Geophysical Research: Planets, 111(E12).
38 Griffin, M. (2004), Space vehicle design, AIAA Education Series.