
 
1. INTRODUCTION 

 
Today, high speed aircrafts like military aircrafts are 

demanded to perform various maneuvers and missions with 
high risk in battle field. According to this demand, many 
researches concerning about nonlinear flight dynamics have 
been attracted in the field of flight control system design, 
which are those away from the conventional approaches of 
flight control system designs based on aircraft linear flight 
dynamics. However, the linear flight control systems, 
designed in linear control theories such as classical control, 
optimal control like LQG/LTR and several robust controls of 

theory and −∞HH /2 −µ synthesis and many others, are 
still valuable and popular in aircraft industry. These 
techniques have a common procedure in the flight control 
system design: first of all, nonlinear flight dynamics of the 
associated aircraft are linearized around important trim points 
located within the overall flight envelope, and then apply 
linear control theories to each of the linear models to satisfy 
the handling qualities given in several MIL specs like 
MIL-8785C. Once appropriate flight control laws at each of 
trim points are designed, finally, gain scheduling is applied to 
those of the flight control systems to complete the final control 
system design. Usually gain scheduling is in charge of 
variation of control laws to airspeed, angle of attack and 
dynamic pressure. Also this approach can cover, to a certain 
extent, robustness to uncertainties of aerodynamics and 
nonlinearities of aircraft dynamics due to linear model-based 
design. However, this approach needs a lot of time and effort 
to get to a final design. Hence, in this paper, we propose an 
adaptive nonlinear control technique to design a robust flight 
control system efficiently. This technique is based on linear 
control and adaptive neural network so there is no need of gain 
scheduling. In this flight control proposed, the linear control 
structure consists of Stability Augmentation and Hold 
Autopilot, and the adaptive neural network has a role of 
canceling uncertainties of aerodynamics and variation of flight 
dynamics due to change of trim points. 

Among various kinds of flight maneuvers, approach 
landing is the most dangerous since airspeed of this maneuver 
is very low near stall region and angle of attack is very high 
near maximum lift. Also pilot work load is extremely high in 
this fight region. Because of this situation, domestic aircraft 
accident record showed that the pilot’s mistake is one of the 
main reasons of the accidents. Moreover more than 50% 
among accidents occur in the approach and landing maneuver. 
Hence, auto-landing is most preferable to reduce accidents 
originated from pilot’s mistake due heavy pilot workload. In 

this paper, we will design an auto-landing guidance and 
control system in adaptive nonlinear control technique 
proposed in this study, which is based on linear controller 
combined with neural network. In this approach, first of all, an 
auto-landing linear tracking controller satisfying the handling 
quality is designed in classical design technique. In the next 
the adaptive neural network with single hidden layer is 
introduced to compensate for model error between the 
reference tracking model and the outputs of the feedback 
control system coming out of the nonlinear aircraft model. To 
satisfy the overall closed-loop stability, Lyapunov stability 
concept is applied to the closed-loop system based on the 
linear feedback controller and the adaptive neural network. 
From this result, a set of on-line weight update rules for the 
neural network, whose activation function is sigmoidal 
function, will be obtained. This proposed design technique for 
longitudinal auto-landing maneuver is evaluated in the 
nonlinear aircraft simulation model: initial flight conditions 
are 1500 ft altitude and 250 ft/se velocity in level flight and 
the associated aircraft is about to the approach landing. In 
section 2, overall picture of linear controller-based neural 
network compensation technique is briefly explained, and the 
multiplayer neural network to be used in this paper is 
discussed in details in section 3. In section 4, this technique is 
applied to auto-landing guidance and control system design, 
and conclusion is followed in section 5. 
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2. SYSTEM DESCRIPTIONS 
 

In general a nonlinear system is described in the following 
form of Eq.(1), 

 
]),[( uxuBAxx ∆++=&             (1) 

 
where state vector , control input vector , and nRx∈ mRu∈

],[ ux∆ denotes approximate error or uncertainty in nonlinear 
system. In this paper, it is assumed that we already have a 
linear controller for inner-loop (stability) and outer-loop 
(command) of the overall structure of control system. This 
structure is shown in Fig.1. Note that the associated matrices 
in Fig.1 implies inner-loop controller of the matrices with 
subscript (η ) and the outer-loop controller of the matrices 
with subscript( ρ ). 
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Figure 1. Linear Control System Designed 
 
The closed-loop state equation of this control structure is 
expressed in Eq.(2) and Eq.(3). 

 
],[** uxByBA ∆++= ∆ϑϑϑ&               (2) 

ϑϑ
*Cy =                       (3) 

 
From the state equation in Eq.(2) and Eq.(3), a linear equation 
excluding the uncertain matrix term is obtained shown in 
Eq.(4). This is the reference model to which the nonlinear 
plant model should follow in the final feedback system.  

 
ϑϑϑ yBA RR

** +=&                   (4) 

RR Cy ϑ*=                         (5) 
 

where the input in Fig.1 is defined to be 
 

ηρ uuu −=                       (6) 
 

Now define the error state to be the error between the state 
coming from Eq.(4) and the state coming from the plant model 
in Eq.(1). The error state equation is obtained in Eq.(8). 
 

ϑϑ −= Re                         (7) 

],[* uxBeAe ∆−= ∆&                    (8) 
 
Since the approximate error or uncertainty in nonlinear plant 
exist in the term of , canceling those effects is required 
in the overall closed-loop system. In this study, we introduce 
neural network to this approach. The neural network input is 
added to the control input in Eq.(6), and then the total control 
input is defined as in Eq.(9). 

],[ ux∆

 
aduuuu ˆ−−= ηρ                   (9) 

 
Therefore the error dynamical equation is expressed again in 
Eq.(10). 

 
]),[ˆ(* uxuBeAe ad ∆−−= ∆&               (10) 

 
where *A and are defined in Eq.(2), respectively. ∆B

 
 

3. MULTILAYER NEURAL NETWORKS 
 
In this paper, we introduce a neural network with single 

hidden layer, which is defined in Eq.(11). 
 

)()( zNSMzg TT=                   (11) 
 

where the coefficient matrix between output layer and hidden 
layer denotes lT RM ∈ , and the coefficient matrix between 
input layer and hidden layer . Also the input 
variables into neural network is selected to be  

lnT RN *)3( +∈

31ˆ +∈⎥⎦
⎤

⎢⎣
⎡= n

F
T RWyez ϑ

. Also  is an activate 

function. In this study this function is Sigmoidal function 
defined to be 

)(⋅S

az
a ezS −+= 11)( . When an ideal solution of the 

weighting matrices of the neural network are *M an , 
respectively, the approximate of them are the matrices of 

*N

M̂  
and , respectively. The error matrices between the ideal 
and approximate matrices are defined as 

N̂
*ˆ~ MMM −= , 

*ˆ~ NNN −= . Note that the neural network with ideal coefficient 
matrices is given in Eq.(12), 

 
ε+= )()( *** zNSMzu TT

ad              (12) 
 

where ε  means boundary layer due to finite number of 
neural network layer. 
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Ŵ

1

adu

)(⋅SN M

M M

Figure 2. Neural Network Structure with Single Hidden Layer 
 

Note that the error between the linear model and the nonlinear 
model is supposed to be approximated in the neural network. 
If the error and uncertainty , shown in Eq.(2),  is 
ideally modeled, then the neural network is substituted into 
Eq.(10). After rewriting the expression, we obtained the 
following form in Eq.(13), 

],[ ux∆

 
)~ˆˆ)ˆˆˆ(~(*

r
TTTT vwzNSMzNSSMBeAe ++−′+′−−= ∆ ε&  (13) 

            
where  is the higher order terms of , which is 
expressed to be 

w 2)(⋅O

zNSMzNOMw TTTT *2* ˆ~)~( +=          (14) 
 

and denotes the term to cancel the error between the 
higher order term in Eq.(14) and the boundary layer (

rv
ε ). Also 

it is defined to be 
 

)ˆ(ˆ zNSS T=  and         (15) }ˆ,ˆ,ˆ{ˆ
21 lsssdiagS ′′′=′ L

 
Note that [ ] lidzzsdznss znzaa

T
ii T

ia
L,2,1,/)()ˆ(ˆ ˆ ==′=′ = . 

 
In order that the overall closed-loop system should be stable, 
the following Lyapunov function is introduced, as shown in 
Eq.(16), 
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where the positive definite symmetric matrix P is obtained 
from the algebraic Lyapunov equation in Eq.(17).  

 
 IPAPA TT 2** −=+                (17) 

 
Here the update rule for the neural network are defined to be 
as follows, 

 
( )[ ]MzNSSM T

M
ˆˆˆˆˆ λσλ +′−Π−=&         (18) 

[ NSMzN T
N
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λ
λ
λ
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⎝
⎛ += ˆ         (20) 

where the parameter ( λ ) and the stacked weighting matrix 
( ) are defined to be ŵ

∆= PBeTλ                   (21) 

⎥
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0ˆˆ                  (22) 

 
Note that real values of  and  are positive, and wk vk

F
Ŵ is 

Frobenius norm of W . Also training rate of the neural 
network (Π ,Π ) should be positive. Once we got those for 
Eq.(16), then the first derivative of the Lyapunov function 
should be negative in order that the overall closed-loop system 
is stable. 

ˆ

M N

Now, take a derivative in Eq.(16) and derive the derivative 
gain by substituting Eq.(13), Eq.(17), Eq.(18) and Eq.(19). a
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where w can be rewritten from Eq.(14) to be as  
 

2
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Furthermore Eq.(23) becomes as follows, 
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Therefore becomes negative when the following terms are 
satisfied: , , 

V&

2ckW > 00 >a 01 / aa>λ . 
 
 

4. APPLICATION TO GLIDESLOPE CAPTURE 
LOGIC DESIGN FOR AUTOLANDING 

PROBLEM 
 

In this section, an auto-landing guidance and control system 
will be designed in the technique proposed in the previous 
sections. The design process for auto-landing control system is 
that first, an appropriate linear controller is designed, for an 

example, in classical root-locus method. Then after 
formulating the problem in state space in which the proposed 
design technique needs, we design a proper neural network. In 
this study, a glide-slope capture logic in longitudinal motion is 
only considered to apply this proposed technique to 
auto-landing control system. The control logic designed 
consists of the inner-loop (velocity stabilization and stability 
augmentation) and the outer-loop (pitch command). Also the 
glide-slope capture logic as guidance logic is designed to 
simulate auto-landing situation. The trim at which the linear 
aircraft model is obtained is unstable so stability augmentation 
logic is required. Once the linear control system with good 
stability and command following performance is designed as 
the reference model, the overall closed-loop system in 
nonlinear aircraft model with the linear control system is 
composed. In order to evaluate performance of the overall 
system, two commands of velocity (250 ft/sec) and pitch angle 
are added to the nonlinear aircraft model, where the pitch 
angle command is generated by glide-slope capture guidance 
logic. In the numerical simulation, the associated aircraft starts 
landing maneuver at the trim of altitude 1500ft, airspeed 250 
ft/sec and a level flight with flight path angle 3 deg.  

The linear model of the associated aircraft is defined in 
Eq.(27) and Eq.(28). 

 
UBXAX FF +=&                 (27) 
UDXCY FF +=                 (28) 

 
where the state variables and the control inputs are 

[ ]Tett PqVX δδθα=  
[ ]Tet uuU =  

and  and  denote throttle (%) and elevator (deg), 
respectively.  Inputs to the neural network are state variables 
of the aircraft and norm of the weighting matrices and neural 
network outputs itself. The overall simulation block diagram 
in Matlab/Simulink is depicted in Fig.3.  

tu eu

 
 

 
Figure 3. Overall Block Diagram in Matlab/Simulink 

 
In this design, design parameters for the neural network are 
determined to be as MΠ = 0.03, = 0.1, 

NΠ σ = 0.0005, = 

0.004, =0.001. Since the control inputs are elevator and 
throttle, two commands are selected so that the commands of 
velocity and pitch angle will expect to show reasonable 
performance. In fig.4, the time responses of the glide-slope 
capture logic to the commands are shown and compared with 
each other. The response shown in dotted line is that coming 
from the reference model, and the response in the solid line is 
that which is compensated in the neural network for the error 

wk
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between the reference model and the nonlinear plant. From the 
figure in Fig.4, the responses of velocity and pitch angle are 
fairly good to follow the commands of velocity and pitch 
angle during the glide-slope capture. The other responses 
show reasonable results but do not have accurate model 
following characteristics: angle of attack and flight path angle. 
This problem comes from insufficient control inputs in the 
nonlinear plant. However effect of neural network on 
compensation for the error existing during the glide-slope 
capture maneuver can be seen in Fig.5. The 2 norm of the 
error is shown where the dotted line shows uncompensated 
responses and the solid line implies compensated response to 
the commands. The altitude response, however, is fairly 
acceptable even though some error between reference and real 
response exits. 

 
 

 

 
 

5. CONCLUSIONS 
 
So far we proposed a design technique for auto-landing 
guidance and control system. Main features of this design 
technique is to use conventional linear controller and 
compensate for the error coming from the model uncertainties 
and/or reference model mismatch. In this study, the 
multi-perceptron neural network with single hidden layer is 
adopted to compensate for the errors. From the simulation 
results, it is observed that the responses of velocity and pitch 
angle to commands are fairly good, which are directly related 
to control inputs of throttle and elevator, respectively. 

 

 

 

Figure 4. Time Responses to Commands 
 
 

 

 

Figure 5. 2 Norm of the Error Between Ref. Model and 
Nonlinear Plant Model 
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