• Title/Summary/Keyword: Landing motion

Search Result 146, Processing Time 0.024 seconds

Design and performance test of a foot for a jointed leg type quadrupedal walking robot (관절형 4족 보행로봇용 발의 설계 및 성능시험)

  • Hong, Ye-Seon;Yi, Su-Yeong;Ryu, Si-Bok;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1250-1258
    • /
    • 1997
  • This paper reports on the development of a new foot for a quadrupedal jointed-leg type walking robot. The foot has 2 toes, one at the front and the other at the rear side, for stable landing on uneven ground by point contact. The toes can move up and down independantly, guided by double-wishbone shaped parallel links which enable the lower leg to rotate with respect to a remote center on the ground surface. The motion of each toe is damped by a hydropneumatic shock absorber integrated in the foot in order to absorb the dynamic landing shock. Furthermore, the new foot can reduce the maximum hip joint drive torque by shortening the moment arm length between the hip joint and the landing force vector on the ground. Intensive experiments were carried out in this study by using a one-leg walking model to investigate the soft landing performance of the foot which could be hardly offered by conventional robot feet such as a flat plate with a gimbal type ankle joint. And it was confirmed that the hip joint torque of the leg walking on the flat surface could be reduced remarkably by using the new foot.

The analysis of lower extremities injury on depth jump (Depth Jump 시 하지 관절 상해에 관한 운동역학적 분석)

  • So, Jae-Moo;Kim, Yoon-Ji;Lee, Jong-Hee;Seo, Jin-Hee;Chung, Yeon-Ok;Kim, Koang-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.127-142
    • /
    • 2005
  • The purpose of this study was to analysis biomechanics of the lower extremities injury the heights(40cm, 60cm, 80cm) of jump box as performed depth jump motion by 6 females aerobic athletes and 6 non-experience females students. The event of depth jump were set to be drop, landing and jump. The depth jump motions on the force plate were filmed using a digital video cameras, and data were collected through the cinematography and force plate. On the basis of the results analyzed, the conclusions were drawn as follows: 1. The landing time of skill group was shorter than unskill group at 40cm, 60cm drop height during drop-landing-jump phase especially. The landing time of 60cm drop height was significant between two group(p<.05). 2. The peak GRF of sagittal and frontaI direction following drop height improve was variety pattern and the peak vertical force of 40cm drop height was significantly(p<.05). 3. The magnitude of peak passive force was not increase to change the drop height. 4. The peak passive forces was significant at 40cm drop height between two groups(p<.05)

Effect of Lateral and Posterior Placement of Single-Bundle and Double-Bundle ACL Reconstructions on Tibial Internal Rotation During Single-Leg Landing (전방십자인대 한다발재건술의 후외측다발 재건 및 두다발재건술이 외발착지 동작 시에 경골내회전에 미치는 영향)

  • Shin, Choong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.517-523
    • /
    • 2011
  • Anterior cruciate ligament (ACL) injuries are treatedwith surgical reconstruction. Although ACL consists of two functional bundles, only the anteromedial bundle is surgically reconstructed, and the effect of the reconstruction of the posterolateral bundle is unknown. The purpose of this study is to investigate the role of the posterolateral bundle and the effect of double-bundle reconstruction during single-leg landing. A 3D dynamic knee with various ACL reconstructed models was created using MRI, and single-leg landing motion was simulated using in-vivo human experimental data. The results showed that the lateral shift of the tibial insertion of the anteromedial bundle and the posterolateral bundle of the ACL constrain the tibial internal rotation more efficiently than a single anteromedial bundle can. In addition, double-bundle ACL reconstruction is less sensitive to inaccuracies in the tibial tunnel placement.

Risk free zone study for cylindrical objects dropped into the water

  • Xiang, Gong;Birk, Lothar;Li, Linxiong;Yu, Xiaochuan;Luo, Yong
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.377-400
    • /
    • 2016
  • Dropped objects are among the top ten causes of fatalities and serious injuries in the oil and gas industry (DORIS, 2016). Objects may accidentally fall down from platforms or vessels during lifting or any other offshore operation. Proper planning of lifting operations requires the knowledge of the risk-free zone on the sea bed to protect underwater structures and equipment. To this end a three-dimensional (3D) theory of dynamic motion of dropped cylindrical object is expanded to also consider ocean currents. The expanded theory is integrated into the authors' Dropped Objects Simulator (DROBS). DROBS is utilized to simulate the trajectories of dropped cylinders falling through uniform currents originating from different directions (incoming angle at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, and $270^{\circ}$). It is found that trajectories and landing points of dropped cylinders are greatly influenced by the direction of current. The initial conditions after the cylinders have fallen into the water are treated as random variables. It is assumed that the corresponding parameters orientation angle, translational velocity, and rotational velocity follow normal distributions. The paper presents results of DROBS simulations for the case of a dropped cylinder with initial drop angle at $60^{\circ}$ through air-water columns without current. Then the Monte Carlo simulations are used for predicting the landing point distributions of dropped cylinders with varying drop angles under current. The resulting landing point distribution plots may be used to identify risk free zones for offshore lifting operations.

The Effects of Ankle Taping on Ankle Angular Velocity, Ground Reaction Force and Postural Stability during Jump Landing on Athlete with Functional Ankle Instability (기능적 발목 불안정성을 가진 선수에게 발목 테이핑이 점프 후 착지 시 발목 각속도, 지면반력과 자세 안정성에 미치는 영향)

  • Kim, Kyoung-Hun;Cho, Joon-Heang
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.519-528
    • /
    • 2009
  • The effects of taping on the use of such measures for prevention have already been comprehensively described in the literature. However, few studies have analyzed ground reaction forces and postural stability with functional ankle instability subject during dynamic activities with ankle taping The purpose of this study was to identify the effects of ankle taping on ground reaction force and postural stability during jump landing. Fourteen players who has ankle instability were participated in this study. we used vicon and force platform. The application of taping who has ankle instability decreased DF and inversion angular velocity and peak vertical ground reaction force during landing. It also improved A-P cop, M-L cop in stability. The findings of this study support the use of taping as part of injury prevention for subject with functional ankle instability in clinical setting.

The kinematic analysis of the Hurdling of Men's 110m Hurdle (남자 국가대표 110m허들선수의 허들동작에 관한 운동학적 분석)

  • Lee, Jung-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to determine the kinematic variables of the hurdling for a korea record holder (A) and a national hurdle representative (B). after the kinematic variables such the distance and the distance and height of C.G, the velocity and the angle were analyzed about the hurdling. The results were summarized as follows; 1. In terms of the distance and the height of C.G, subject A showed long in horizontal distance from C.G to the take-off phase, but showed short in the landing phase. Subject B showed short in horizontal distance from C.G to the take-off phase, and showed long in the landing phase. 2. In terms of the velocity of C.G, Subject A showed fast C.G velocity in horizontal direction to the braking phase, Subject A and B showed slower C.G velority in the landing phase, but Subject A showed height C.G velocity in vertical direction to the to the take-off, the landing, and propulsion phase 3. In terms of the angle of C.G and lean of C.G to front at the braking and the take-off phase. Subject A kept the less angle in the maximum trunk lean to front at the flight phase as comparison with Subject B. 4. In terms of the velocity of the knee and the ankle joint. Subject A showed fast in the resultant velocity of the left ankle joint the take-off phase, but showed slow in the left knee joint. Subject B showed fast in the resultant velocity of the left knee joint the take-off phase, but showed slow in the right knee and the right ankle joint.

The Kinematic Analysis of the Last Stride landing and Release Phase in the Women Javelin (여자 창던지기 도움닫기 최종 1보 착지와 릴리즈 국면의 운동학적 분석)

  • Hong, Soon-Mo;Lee, Young-Sun;Kim, Tea-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.51-63
    • /
    • 2004
  • The purpose of this study was to investigate a three dimensional kinematic variables about the last stride and the release phase of the throwing technique for female javelin throwers. For the motion analysis, Six female javelin throwers were used as subjects. Three-dimensional coordinates were collected using the Kwon3D Motion Analysis Package Version 2.1 Program. Two S-VHS Video Cameras were used to record the locations and orientations of control object and the performances of the subjects at a frequency of 6.0 HZ. After the kinematic variables such as the time, the distance, the velocity, and the angle were analyzed about the last stride and release phase, the followings were achieved; 1. For the effectively javelin throwing, the subjects appeared to do long the approach time in the phasel of landing phase, and short the delivery time in release phase 2. In the release event, the other subjects except for subject A appeared to throwing in the lower condition than the height of themselves. This result showed to slow the projecion velocity. 3. For increase the projection vcelocity of the upper extremity joint in the release event, it appeared to do extend rather the shoulder angle than increase the extension of elbow joint. 4. The body of COG angle showed to gradually increase nearly at the vertical axis in the release event. But the front lean angle of trunk showed a small angle compare to increase of the body of COG angle. Therefore for the effectively momentum transmission of the whole body in the javelin, the front and back lean angle of trunk appeared to do fastly transfer the angle displacement in the arch posture or the crescent condition during the deliverly motion of the release phase.

The Development of Stretch Sensors for Measuring the Wrist Movements for People Using Fishing Lures (루어낚시 참여자의 손목 움직임 측정을 위한 스트레치 센서 개발)

  • Choi, Yoon-Seung;Park, Jin-hee;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.25 no.3
    • /
    • pp.77-90
    • /
    • 2022
  • This study seeks to develop a stretch sensor for measuring the wrist movements of people using fishing lures. In order to confirm wrist movement, a stretch sensor was attached to the wrist band, and measurements of the dorsiflexion, plantar flexion, and fishing landing motion were measured using a scale to gauge factor, tensile strength, and elongation recovery rate. A conductive sensor using CNT dispersion was developed and applied to the E-band under the same conditions. A total of 15 sensors of the same size and five types of impregnation once, twice, and three times each were used to measure the gauge factor using UTM. The sensor that was impregnated twice had the best gauge rate, and the prototypes were manufactured with three sensors with high gauge rates and tensile strength. The results of the operation test conducted by connecting to the Arduino showed that Sample 1, which had the highest tensile strength and gauge factor, had a stable graph wavelength in three operations. Samples 2 and 3 showed stable wavelengths in the dorsiflexion and the plantar flexion; however, signal noise appeared in the fishing landing motion. This showed stable wavelengths in the two motions, but the wavelengths of the graphs differ depending on the tensile strength and gauge factor in the fishing landing motion. As a result, it was possible to identify the conditions necessary for manufacturing a stretch sensor for measuring wrist movement. This study will contribute to the development of smart wearable products for lure fishing.

Impact Analysis in the Landing Motion of Humanoid Robot

  • So, Byung-Rok;Kim, Seong-Hoon;Park, Jae-Yeoni;Yi, Byung-Ju;Kim, Wheekuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.84.2-84
    • /
    • 2002
  • $\textbullet$ The dynamic model of a floating human body is derived $\textbullet$ Introduction to impact model for human body $\textbullet$ Analysis of external impulse on the sole $\textbullet$ Analysis of internal impulse at the joints $\textbullet$ It is shown through simulation that the internal impulses for two different configurations

  • PDF

Mechanical Analysis of the Force on Landing 3 Type Curves(Ellipse, Circle, Brachistochrone) of Halfpipe (스노우보드 하프파이프 점프시 착지 충격에 관한 3가지 곡선(타원, 원, 브라키스토크론)의 역학적 해석)

  • Lee, Un-Hak;Kim, Kew-Wan;Park, In-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.1-19
    • /
    • 2008
  • This research is to analyze the force on landing 3 Type of Halfpipe Curves(Ellipse, Circle, Brachistochrone) based on the mechanical calculation of normal force on a sloping surface. Jumping off a platform on a bard horizontal surface, the flexing of the legs, the softness of the snow, the angle of the landing surface, initial velocity and the forward motion of the snowboarder can contribute to reducing the force on landing. But halfpipe is significantly determined by the curvature of surface. It is definitely verified that the Brachistochrone curve is more safety than others. However currently using the Ellipse curve is mostly safe too. If we consider the efficiency of construction, we can easily think there is no use of another curves except normal ellipse curved halfpipe. It would better that geometrically verity curved halfpipe should be designed for improving fluent skills to snowboarders. This methode of research can be a model of scientifical research on sports safety how can sportsman reduce critical injury by designing optimal halfpipe facilities and manual.