• 제목/요약/키워드: Landing approach

검색결과 114건 처리시간 0.018초

무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리 (Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter)

  • 김덕열;김도명;석진영
    • 제어로봇시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

Research on Landing Impact Characteristic Of Multi-Wheel Bogie Landing gear's Truck

  • Cao, Xin;Jia, Yuhong;Tian, Jiajie
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.83-86
    • /
    • 2015
  • Taking the four-wheel bogie landing gear as an example, the force status of truck-like landing gear during the landing impact was analyzed and the simulation model of four-wheel bogie landing gear was established. Firstly, a landing gear prototyping model was established using CATIA and imported to LMS Virtual.lab. Secondly, dynamic analysis of the landing impact was simulated with the established model. Finally, with the help of LMS Virtual.lab's parametric design ability, the effects of landing approach and truck pitch angle on the landing performance, truck motion and truck beam strength were studied. These conclusions will be useful to the design and analysis of the truck.

Hard-landing Simulation by a Hierarchical Aircraft Landing Model and an Extended Inertia Relief Technique

  • Lee, Kyu Beom;Jeong, Seon Ho;Cho, Jin Yeon;Kim, Jeong Ho;Park, Chan Yik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.394-406
    • /
    • 2015
  • In this work, an efficient aircraft landing simulation strategy is proposed to develop an efficient and reliable hard-landing monitoring procedure. Landing stage is the most dangerous moment during operation cycle of aircraft and it may cause structural damage when hard-landing occurs. Therefore, the occurrence of hard-landing should be reported accurately to guarantee the structural integrity of aircraft. In order to accurately determine whether hard-landing occurs or not from given landing conditions, full nonlinear structural dynamic simulation can be performed, but this approach is highly time-consuming. Thus, a more efficient approach for aircraft landing simulation which uses a hierarchical aircraft landing model and an extended inertia relief technique is proposed. The proposed aircraft landing model is composed of a multi-body dynamics model equipped with landing gear and tire models to extract the impact force and inertia force at touch-down and a linear dynamic structural model with an extended inertia relief method to analyze the structural response subject to the prescribed rigid body motion and the forces extracted from the multi-body dynamics model. The numerical examples show the efficiency and practical advantages of the proposed landing model as an essential component of aircraft hard-landing monitoring procedure.

비행기지 PAR을 이용한 DGPS 공항 접근 및 착륙 정확도 분석 (Analysis of DGPS Approach and Landing Accuracy using Air Base Precision Approach Radar)

  • 구정;표상호;강경성;김기형
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.788-797
    • /
    • 2011
  • This paper analyzes the accuracy on the approach and landing of aircraft to an airport through comparison with airbase Precision Approach Radar and aircraft track data of DGPS equipped in aircraft. The proposed analysis result could be a basis for verifying the possibility that DGPS can be utilized in Airbase precision approach and landing. Position identification capability of widely used commercial DGPS is fairly accurate on latitude and longitude, while there is a slight error for being used in an airbase accurate approach and landing of Category I precision when it comes to altitude. Thus, we tested accuracy by analyzing actual flight track data of high performance aircraft to verify the accuracy of the airbase approach and landing using DGPS. Through the research, we developed instrumentation to compare PAR track data with DGPS track data, which can be used in reducing the number of PAR verification Flight utilizing it as a system measuring PAR accuracy at PAR installation phase.

Design of Multisensor Navigation System for Autonomous Precision Approach and Landing

  • Soon, Ben K.H.;Scheding, Steve;Lee, Hyung-Keun;Lee, Hung-Kyu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.377-382
    • /
    • 2006
  • Precision approach and landing of aircraft in a remote landing zone autonomously present several challenges. Firstly, the exact location, orientation and elevation of the landing zone are not always known; secondly, the accuracy of the navigation solution is not always sufficient for this type of precision maneuver if there is no DGPS availability within close proximity. This paper explores an alternative approach for estimating the navigation parameters of the aircraft to the landing area using only time-differenced GPS carrier phase measurement and range measurements from a vision system. Distinct ground landmarks are marked before the landing zone. The positions of these landmarks are extracted from the vision system then the ranges relative to these locations are used as measurements for the extended Kalman filter (EKF) in addition to the precise time-differenced GPS carrier phase measurements. The performance of this navigation algorithm is demonstrated using simulation.

  • PDF

사전 시뮬레이션과 점항법 유도를 이용한 고정익 무인기의 자동 착륙 접근 (Pre-simulation based Automatic Landing Approach by Waypoint Guidance for Fixed-Wing UAV)

  • 이제훈;박상혁
    • 한국항공우주학회지
    • /
    • 제49권7호
    • /
    • pp.557-564
    • /
    • 2021
  • 본 논문에서는 고정익 무인기의 점항법을 이용한 자동 착륙 접근 유도에 대해 기술한다. 본 연구의 주요 특징은 Dubin's 모델 기반 2D 사전 시뮬레이션을 이용하여 자동 착륙 접근에 필요한 경로점을 생성하고, 또한 사전 시뮬레이션으로부터 활주로까지의 남은 시간을 예측하여 이를 고도 제어에 활용한다. 설계한 알고리즘의 성능은 시뮬레이션과 비행 시험을 통해 검증한다.

항공기 자동착륙 유도 법칙에 관한 연구 (Guidance Laws for Aircraft Automatic Landing)

  • 민병문;노태수;송기정
    • 한국항공우주학회지
    • /
    • 제30권5호
    • /
    • pp.41-47
    • /
    • 2002
  • 본 논문에서는 일반항공기나 무인항공기의 자동착륙에 적용할 수 있는 착륙 유도 법칙을 제안하고 기존의 일반적인 착륙 과정과의 비교를 통하여 성능을 확인하였다. 착륙 유도법칙은 미사일 요격에서 사용되는 Miss distance 개념과 Lyapunov 안정성 이론에 근거하여 궤환 형태의 속도 및 비행 경로각 명령을 생성할 수 있도록 구성하였다. 기존 문헌에 제시된 항공기의 자동착륙 시뮬레이션을 이용하여 착륙 접근 및 착지 기동 과정을 모사하였다. 착륙 접근의 제U 목적인 강하로 이탈 거리 제거와, 착지 기동시 제어 목적인 고도 제어의 관점에서 새로이 제안하고 있는 착륙 유도 법칙은 기존 방법에 대등 또는 우수한 결과를 얻을 수 있었다. 기준 궤적의 설정에 따라 다양한 비행 궤적 추종이 가능하므로 향후 무인기의 자동 착륙이나 기동 비행의 설계시 적용할 수 있을 것이다.

재진입 비행체의 진입 및 착륙단계 경로 생성 및 퍼지제어기 설계 (Trajectory Planning and Fuzzy Controller Design of a Re-entry vehicle on Approach and Landing phase)

  • 민찬오;조성진;이대우
    • 한국항공우주학회지
    • /
    • 제38권2호
    • /
    • pp.150-159
    • /
    • 2010
  • 재진입 비행체의 Approach & Landing단계는 Steep Glideslope 단계, Circular Flare 단계, Flare Maneuver 단계로 이루어지며, 본 논문에서는 실시간 경로 생성을 위하여 기하학적 조건을 이용한 기준궤적 생성 알고리즘을 사용하였다. 이를 통하여 재진입비행체의 착륙 안정성을 고려한 기준궤적을 빠른 시간 안에 생성할 수 있다. 그리고 본 논문에서는 비선형 시스템에 대하여 강건성을 가지는 Mamdani Fuzzy PD Controller를 통한 종방향 및 횡방향 제어기를 설계하였다. 또한 Downrange 와 Crossrange의 초기 오차를 포함하는 시뮬레이션을 수행하여, 제안된 Fuzzy 제어기의 우수한 성능을 확인하였다.

위성항법시스템 기반 한국형 군용 정밀착륙체계 국내개발 방향 및 기술타당성 분석 (Feasibility Study on Domestic Development of a Precision-Landing System for Korean Military Based on GNSS)

  • 이기훈;안종선;이영재
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.762-770
    • /
    • 2013
  • Korean military is currently using and operating a precision approach and landing system, called RAPCON (ASR/PAR), which is imported from overseas. However, drawbacks of this system are operational and cost problems that come along, e.g. straightness of the radio waves, limited ability of narrow searching, lack of interoperability, and high cost of installation and maintenance. Moreover, as the civilian air traffic control uses a similar system compared to the military, the so called DME/VOR/ILS, disturbance between these two systems triggered the consideration of GNSS as alternative system. In this paper, we conduct a research on trends in the field of precise approach and landing systems based on GNSS, analyze weaknesses of GNSS(jamming, fault) and consider possible solutions. Furthermore, we propose the precise approach and landing system based on GNSS to be used by the Korean military as we found it to be also suitable for military purposes. Finally, we examine the benefits of a domestic development with different focuses(development/cost of mass production/operational advantages and potential for increased performance).

강하각 유지를 위한 강하율 산정 연구 (A Study on the Calculation of the FPM for the Descent Angle)

  • 이경한;김성엽;최지헌
    • 한국항공운항학회지
    • /
    • 제31권2호
    • /
    • pp.1-6
    • /
    • 2023
  • When landing an aircraft descent-speed, wind around the airport, and regulations are important indicators for the pilot to decide whether to land in the Final Approach. In this study, in order to maintain a decent angle accessible to the airport, the pilot predicts an appropriate decent rate suitable for wind direction, wind speed, and speed to make a stable landing. To confirm this, the decent rate according to the speed and speed of wind was calculated using the information actually measured on the B737NG aircraft and compared with the theoretical figures. The purpose of this study is to ensure that the pilot can make a stable landing at a given FPM (Feet Per Minute) when a visual approach and non-normal approach is required at an airport designed with a somewhat higher descent angle.