• Title/Summary/Keyword: Landing and take off

Search Result 208, Processing Time 0.025 seconds

A Study on Take-off and Landing Experimental System for Development of Power Platforms for Electric Vertical Take-Off and Landing Air Mobility (전기 수직이착륙 항공모빌리티용 동력플랫폼 개발을 위한 이착륙 실험시스템 연구)

  • Jun-Seong, Weon;Kwang-Hyun Ro
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.639-648
    • /
    • 2023
  • In modern society, UAM (Urban Air Mobility) transportation system is being developed as an alternative to urban traffic congestion and environmental problems, and electric vertical take-off and landing (eVTOL) is a combination of vertical take-off and landing function and electric power. It is attracting attention as an innovative next-generation transportation method as an eco-friendly alternative that reduces noise and air pollution by providing efficient mobility within the city. Since eVTOL development requires designing and implementing airframes suitable for various mission purposes, the power system needs to be developed as a platform concept before airframe development. In this study, we empirically proposed a test bench concept equipped with a stable power supply and an efficient control system, essential in developing a power platform with a combined function in the form of a fuselage and module type specialized for various mission purposes. The proposed drivetrain platform test bench consists of a system verifying the stable take-off and landing software and a power platform adjusting the motor's thrust. It will serve as a verification system that can be developed.

The 3D Numerical Analysis on the Predictions of Flight Stability at Take-off and Landing (Crosswind 60°) (이.착륙 비행 안정성 예측을 위한 3차원 수치해석(측풍 60° 방향))

  • Sheen, Dong-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.94-102
    • /
    • 2012
  • The aim of this paper is to research the change in the turbulent flow and the AOA occurred by $60^{\circ}$ crosswind to the direction of runway through the three-dimensional numerical analysis and to predict the take-off and landing flight stability. As a result, the maximum amplitude of AOA variation on runway reached $4.88^{\circ}$ within 7 second because of the wake formed by the constructions in the vicinity of the airport, and the overall effects appeared as an irregular aperiodic forms. Additionally, it was observed that the layout and shape of the buildings effected on the strength of turbulence directly, and the rapid flow generated between the buildings changed into stronger wake and eventually expected that the flow raises serious take-off and landing flight instability.

Design optimization of a fixed wing aircraft

  • Yayli, Ugur C.;Kimet, Cihan;Duru, Anday;Cetir, Ozgur;Torun, Ugur;Aydogan, Ahmet C.;Padmanaban, Sanjeevikumar;Ertas, Ahmet H.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.65-80
    • /
    • 2017
  • Small aircrafts, Unmanned Aerial Vehicles (UAVs), are used especially for military purposes. Because landing fields are limited in rural and hilly places, take-off or landing distances are very important. In order to achieve a short landing or take-off distance many parameters have to be considered, for instance the design of aircrafts. Hence this paper represents a better design to enlarge the use of fixed wing aircrafts. The document is based on a live and simulated experiments. The various components of designed aircraft are enhanced to create short take-off distance, greater lift and airflow without the need for proper runway area. Therefore, created aerodynamics of the remotely piloted aircraft made it possible to use fixed wing aircrafts in rural areas.

A Study on Short-Take-Off and Vertical Landing (STOVL) Performance Evaluation of a Light Aircraft Carrier and a Consistent Analysis of Safe Operating Envelope (SOE) (경항공모함 이·착함 성능평가 및 안전임무 수행범주 일관 해석 연구)

  • Sa Young Hong;Dong-Min Park;Jae Hwan Jung;Min-Guk Seo;Seok-Kyu Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.125-134
    • /
    • 2024
  • The Safe Operating Envelope (SOE) combined with Short-Take-Off and Vertical Landing (STOVL) performance is an essential consideration of a light aircraft carrier for design of hull shape with excellent seakeeping performance in terms of naval air operations as well as traditional naval ship missions such as Transit and Patrol (TAP), and Replenishment at Sea (RAS) and so on. A variety of procedures are systematically combined to determine SOE considering rather complicated missions associated with operation of aircraft onboard. The evaluation of take-off and landing safety missions onboard should consider wind effect on deck and severer seakeeping indices and standards compared with conventional naval ships. In order to support take-off and landing missions, various support activities of the crews are required. So, additional evaluation is needed for indicators such as MSI(Motion sickness Index) and MII(Motion Induced Interruptions), which are quantitative indicators of work ability that appear as a result of motion response. In this study, a standard procedure is developed including the seaworthiness performance indicators, standards, and evaluation procedures that should be considered during design of STOVL aircraft carrier. Analysis results are discussed in terns of air-wake on deck as well as seakeeping indices associated with design parameter changes in view of conceptual design of a light aircraft carrier.

The kinematic analysis of the Hurdling of Men's 110m Hurdle (남자 국가대표 110m허들선수의 허들동작에 관한 운동학적 분석)

  • Lee, Jung-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to determine the kinematic variables of the hurdling for a korea record holder (A) and a national hurdle representative (B). after the kinematic variables such the distance and the distance and height of C.G, the velocity and the angle were analyzed about the hurdling. The results were summarized as follows; 1. In terms of the distance and the height of C.G, subject A showed long in horizontal distance from C.G to the take-off phase, but showed short in the landing phase. Subject B showed short in horizontal distance from C.G to the take-off phase, and showed long in the landing phase. 2. In terms of the velocity of C.G, Subject A showed fast C.G velocity in horizontal direction to the braking phase, Subject A and B showed slower C.G velority in the landing phase, but Subject A showed height C.G velocity in vertical direction to the to the take-off, the landing, and propulsion phase 3. In terms of the angle of C.G and lean of C.G to front at the braking and the take-off phase. Subject A kept the less angle in the maximum trunk lean to front at the flight phase as comparison with Subject B. 4. In terms of the velocity of the knee and the ankle joint. Subject A showed fast in the resultant velocity of the left ankle joint the take-off phase, but showed slow in the left knee joint. Subject B showed fast in the resultant velocity of the left knee joint the take-off phase, but showed slow in the right knee and the right ankle joint.

Study of a Leveling Mobile Platform for Take-off and Landing of Unmanned Aerial Vehicles (무인항공기 이착륙을 위한 수평 유지 이동 플랫폼)

  • Lee, Sangwoong;Kawk, Junyoung;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.85-92
    • /
    • 2020
  • Applications for the unmanned aerial vehicle (UAV) have expanded enormously in recent years. Of all its various technologies, the UAV's ability to take off and land in a moving environment is particularly required for military or oceanic usage. In this study, we develop a novel leveling platform that allows the UAV to stably take off and land even on uneven terrains or in moving environments. The leveling platform is composed of an upper pad and a lower mobile base. The upper pad, from which the UAV can take off or land, is designed in the form of a 2 degrees of freedom (DOF) gimbal mechanism that generates the leveling function. The lower mobile base has a four-wheel drive structure that can be operated remotely. We evaluate the developed leveling platform by performing extensive experiments on both the horizontal terrain and the 5-degree ramped terrain, and confirm that the leveling platform successfully maintains the horizontal pose on both terrains. This allows the UAV to stably take off and land in moving environments.

Transient Responses of an Airplane Taking off from and Landing on a Very Large Floating Structure in Regular Waves (규칙파중 항공기 이.착륙시 초대형 부유식 해양구조물의 천이 응답 해석)

  • 신현경;이호영;임춘규;강점문;윤명철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • Up to now, Most studies of hydroelasticity are about frequency domain analysis. Those aren't suited for analysis of the landing take-off, and dropping of aircraft on a structure. So, the concern of this paper is the transient behavior of a VLFS subjected to dynamic load, induced by airplane landing and take-off. To predict the added mass, damping coefficient, and wave exciting force, the source-dipole distribution method was used in the frequency domain. The responses are accomplished by using the FEM scheme. A time domain analysis method is based on the Newmark β method to pursue the time step procedure, taking advantage of memory effect function for hydrodynamic effects.

  • PDF

Trade-Off Study of Shipboard Landing of Vertical Take-off and Landing Aircraft (수직이착륙 항공기의 함상이착륙 사례분석)

  • Yoo, Chang-Sun;Cho, Am;Park, Bun-Jin;Kang, Young-Shin
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.10-21
    • /
    • 2013
  • As helicopter technology has been upgraded, today its oceanic operation is considered to be usual. In oceanic operation of helicopter, the effect of severe wind, wave, and corrosion must be investigated and the operation procedures for safety as well as the motion of shipboard arising from maneuvers of ship must also be considered. In this paper, it describes the result of trade-off study for shipboard landing and its operation procedure including dynamic interface between ship and aircraft in ship operation and gives a simulation results to implement the oceanic operation of tilt rotor aircraft.

The Kinematics Analysis of Round-off at end of Beam-salto Backward Stretched with Step-out to Cross on Balance Beam (평균대 도움 짚고 몸 펴 뒤 공중 돌아 오르기 동작에 대한 운동학적 분석)

  • Kim, Young-Ran
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.99-116
    • /
    • 2003
  • The purpose of this study was to kinematics factors on during round-off at end of beam-salto backward stretched with step-out to cross on balance beam. Four elite female gymnastics players participated as subject of this study. The methods of this study was analyzed using three dimentional analysis. The results and conclusion of this paper is obtained as follows ; 1. The phase of time was the most short time in board touch down phase and board take-off phase. Also, it was shown a more long time in total time compared to previous study. 2. The horizontal displacement of each phase was shown the most high levels in balance beam landing. The vertical displacement was display a non-linearity increase in board take-of phase, and it was shown the most high levels in vertical displacement during landing of balance beam. 3. The horizontal velocity of each phase was shown the most high levels in board touch down, and it was display a gradually decreased levels because flight during board take-of. The resultant velocity of CG on each phase was shown the most high levels in board touch down and board take-off. 4. The angle of hip joint was shown the most high levels as performed a motion in extension state during board take-off, and the angle of knee joint was display a increased levels because of flight cause body extension in board take-off. Also the angle of ankle joint was shown a increasing levels during board take-off. Considering to this results, it is suggest that the change of kinematics factors in board touch down and board take-off is key role on the effective board control.

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.17 no.5
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.