• Title/Summary/Keyword: Landfill stability

Search Result 67, Processing Time 0.031 seconds

Permeability Influence of Base Soil for Analysis of Road Landfill Stability (도로성토사면의 안정성 분석시 원지반 투수성의 영향)

  • Kim, Young-Muk;Kim, Chung-Ki;Kim, Man-Goo;Kim, Geon-Hae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.890-897
    • /
    • 2005
  • Stability of embankment is influenced on landfill condition, permeability, shear strength and soil engineering propensity and so on, and need examination in reply because is different according to change of soil property of foundation ground and permeability condition. Analyzed seepage behaviour by finite element method for embankment, and change permeability of base to analyze effect that permeability of ground water table formation before embankment and analyze seepage behaviour to typical embankment in this research. In the case of permeability of foundation ground is 10 more than landfill permeability, rise of groundwater table was changed slightly. Pore water pressure was decreased slowly in landfill after rainfall. The effect of permeability of foundation ground was effected in change of pore water pressure. For permeability of foundation ground is 10 more than landfill, stability of road landfill was small changed during rainfall. But in the case of permeability of base soil similar to landfill permeability, road landfill stability was large decreased during rainfall.

  • PDF

Long Term Trend and Stability of Contaminant Sources of Finished Landfill (사용종료 매립장 오염원의 장기 변화 및 안정성)

  • 장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.12a
    • /
    • pp.1-40
    • /
    • 1996
  • In order to determine the proper treatment of the finished landfill, it is important to predict the trend and stability of the major sources of contaminant in the landfill. In this paper the fate of contaminant sources in the landfill is studied from various literatures by grouping the contaminants into waste, leachate, and landfill gas. One example site referred is Nanji landfill which is one of the representative finished landfills in our country and the trend of contaminant sources in this landfill at current stage is discussed.

  • PDF

Development of Stability Index for Defining the End of the Post-closure Monitoring Period for MSW Landfill (폐기물매립지의 사후관리종료 평가를 위한 안정화 지수 산정에 관한 연구)

  • Lee, Nam-Hoon;Han, Jeong-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2006
  • The purpose of this study was to develop the stability index of landfill sites to assess it's degree of stability. In order to develop the stability index, field data including leachate qualities, Landfill gas (LFG) composition and element composition of wastes from 50 closed landfills were collected. Three parameters-BOD/CODcr among leachate quality parameters, $CH_4$ among landfill gases, and C/N ratio from wastes-were found to be the best parameters for measuring the stability of landfill sites. The trend line of these parameters were used to Also, $CH_4$ from landfill gases and C/N ratio from wastes were found to be the best parameters. The trend lines of these parameters were used to develop the stability index of landfill sites. The equation for the index was as following; $I_{LS}=S_L+S_G+S_W$ $S_L=-\{4.892+16.587{\cdot}ln[BOD/COD_{Cr]\}$ $S_G=53.872-12.782{\cdot}ln[CH_4]$ $S_W=79.382-20.013{\cdot}ln[C/N]$ (The maximum score for $S_L$, $S_G$, and $S_W$ was 33.3.) where, $I_{LS}$ : The stability index of the landfill $S_L$ : The stability score of the leachate $S_G$ : The stability score of the landfill gas $S_W$ : The stability score of the waste.

  • PDF

Slope Stability of Waste Landfill Using Textured Geomembrane (Textured 지오맴브레인을 적용한 폐기물 매립장의 사면 안정성 연구)

  • 신은철;윤석호;심진섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.141-144
    • /
    • 2000
  • The slope stability of waste landfill has been a problem in domestic and foreign countries. Waste landfills are being constructed in a reclaimed land or mountainous area. But most of these places are consisted of steep slope and hence it is necessary to use the geosynthetic liners in there. The large size direct shear test(30cm x 30cm) equipment was used to determine the interface friction angles between CCLs and soil & geomembranes. The centrifuge model tests were performed to investigate the slope stability with considering various geosynthetic liners conditions and degree of slope. The results of centrifuge model test indicate that the degree of saturation of GCL, roughness of geomembrane, and slope of landfill have greatly influenced on the slope stability of solid waste landfill.

  • PDF

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

Instability Analysis of Road Landfill Slope during Heavy Rainfall (호우시 도로성토사면의 사면불안정 분석)

  • Kim, Young-Muk;Park, Hyang-Keun;Chol, Mun-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.41-50
    • /
    • 2004
  • The study of seepage behavior is very important to slope stability of road landfill for heavy rainfall season. This study is done to propose more stable of road landfill based on analysis of seepage behavior and slope stability for some cases of road landfill. The selected sections of collapsed road landfill are most general case of road landfill, a case is landfill on the ground area and another case is on the slope area. The results of this study is summarized as follows. It is founded that the road landfill on the ground area is increased saturation region due to rainfall infiltration, and the seepage behavior of road landfill is solved by theory of unsaturated flow. The road landfill is more unstable due to rainfall infiltration at the slope surface, especially during heavy rainfall. The case of road landfill on the slope area is analyzed in consideration of slope surface infiltration, and it is founded that the slope instability is increased because of rainfall infiltration. The drain layer located on the original ground which made by more permeable materials could be good action of slope stability in the case of road landfill on the slope area.

  • PDF

Analysis of Factors Affecting the Slope Stability of Uncontrolled Waste Landfill (비위생 폐기물 매립지 사면의 안정성에 관한 영향인자 분석)

  • Yoo, Han-Kyu;Choi, Bong-Hyuck
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2002
  • The effects of ground water level, shear strength parameters of refuse, and geological condition of ground on the slope stability of uncontrolled waste landfill were studied. The Janbu method of slices based on the limit equilibrium method was used to calculate the minimum factor of safety with respect to slope stability of landfill. The analytical results showed that the factor of safety for a fully dried condition of landfill increased 2.4~2.8 times as great as that for a fully saturated condition of landfill. Under the condition of actual ground water level, the factor of safety linearly increased with increasing both cohesion and internal friction angle of refuse. Also, when the potential failure surface passed through the underlying layer, the factor of safety and shape of potential failure surface were found to depend on geological conditions of underlying layer.

  • PDF

Analysis of Measurement Data for Stability of Seashore Waste Landfills (해안 폐기물매립지 안정을 위한 계측자료 분석)

  • Jang, Yeon-Soo;Choi, Jong-Sig;Ryu, Hye-Rim;Kim, Dong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.947-954
    • /
    • 2008
  • Waste landfills built on weak soils have the possibilities of the failure of slope and foundation due to the disposed waste loads. To ensure the landfill will sustain its stability within a limited site area, it's necessary to investigate and understand the characteristics of soft land by identifying the requirements for waste filling and by quantitative field measurement and management of landfills. In this paper, the stability analyses are performed using the field measurement data of Gimpo #2 Metropolitan Landfil. For the stability analysis, Tominaga-Hashimoto method and Kuriharh method, which may be able to manage the stability of the landfill quantitatively, are used.

  • PDF

Analysis of Soil Contamination with Depth in Non-sanitary Closed Waste Landfill (비위생 사용종료매립장의 심도별 토양오염도 분석)

  • Oh, Young-In;Kim, Kwan-Ho;Lee, Dong-Geon;Cho, Sook-Hee;Bak, Eun-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1217-1224
    • /
    • 2010
  • These days, the maintenance of closed waste landfill come to the fore social problem such as legal maintenance period, after closed maintenance deposits, stability evaluation guides and environmental survey for closed landfill management. Therefore the many non-sanitary closed waste landfill has been removed by selection and transfer to sanitary landfill and incineration. When the remove the non-sanitary landfill, the pollution level of bottom soil was investigated by related government law. In this case study, the soil contamination survey was performed to evaluate the pollution level of non-sanitary closed landfill bottom soil. Based on this study, the pollution level of studied non-sanitary landfill bottom soil was content with related government law for third area(factory, parking lot, gas station, road, railroad use etc.).

  • PDF

A Study on Geotechnical Stability of the Sludge Mixed Soil (슬러지가 혼합된 지반의 공학적 안정 특성에 관한 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • The dyeing sludge can be weakened by inflow of rainfall or absorption of moisture after it is buried in a waste landfill. This study tested the dyeing sludge and earth/sand mixture to check the problem when the dehydrated dyeing sludge is buried in a waste landfill. When the dyeing sludge was left idle with high water content inside a landfill with poor draining for a long period, the water permeability decreased to around 3/100 level and the compressibility increased by 1.4 times compared to the dyeing sludge at a dyeing factory. The study result indicated that it was important to reduce the water content inside the landfill for stability. Also, the facilities to secure the drainage path and eliminate leachate were needed.